BibTex RIS Kaynak Göster

Nanotechnolgy Applications and Phase Changing Materials in Food Packaging

Yıl 2014, Cilt: 39 Sayı: 6, 371 - 378, 01.12.2014

Öz

Food industry and researchers tend to new trends due to increasing conscious and demands of consumers for food safety and quality. The functions of food packaging materials could be modified / increased by the applications of new technologies and/or the additions of new materials. Nanotechnological applications in different fields have produced successful results for obtaining composite materials with unusual properties for different purposes. Food packaging is one of these fields. The nano-sized materials or nanocomposites are used in active or smart packaging which communicates with consumers. In this review, nanotechnology applications in food packaging are summarized along with the possible utilization of phase changing materials (PCM) in food packaging. PCMs are already used for maintaining of foods during transportation. It seems that PCM in food packaging is very promising. In addition, manipulation of PCM by nanotechnology appears to have a great potential in food packaging.

Kaynakça

  • Özçandır S ve Yetim H. 2010. Akıllı Ambalajlama Teknolojisi ve Gıdalarda ‹zlenebilirlik, Gıda Teknolojileri Elektronik Dergisi5 (1): 1-11.
  • Kokangül G ve Fenercio¤lu H. 2012. Gıda Endüstrisinde Akıllı Ambalaj Kullanımı, Gıda Teknolojileri Elektronik Dergisi7 (2): 31-43.
  • Arıkan A. 2010. Gıda Ambalaj Malzemeleri, Ambalaj Bülteni, Temmuz-A¤ustos, s32-35.
  • Krochta J M. 2007. Food packaging, Handbook of Food Engineering, Second Edition, Heldman D R ve Lund D B (ed), CRC Press, Boca Raton, USA, s849-915.
  • Lee D S. 2011. Active packaging, Handbook of Frozen Food Processing and Packaging, Second Edition, Sun D V (ed), CRC Press, Dublin, Ireland, s819-834.
  • Ayana B ve Turhan K N. 2010. Gıda Ambalajlamasında Antimikrobiyel Madde ‹çeren Yenilebilir Filmler/ Kaplamalar ve Uygulamaları, GIDA, 35 (2): 151-158.
  • Cerisuelo J P, Bermudez J M, Aucejo S, Catala R, Gavara R ve Hermandez-Munoz P. 2013. Describing and modeling the release of an antimicrobial agent from an active PP/EVOH/PP package for salmon, J Food Eng, 116 (2): 352-361.
  • Vardin H ve Gamlı Ö F. 2006. So¤utulmufl Gıda Maddelerinin Ambalajlanması ve Aktif Ambalajlama Teknikleri, 9. Gıda Kongresi; 24-26 Mayıs 2006, Bolu, Türkiye, s41-44.
  • Yam K L, Takhistov P T ve Miltz J. 2005. Intelligent packaging: concepts and applications, J Food Sci, 70 (1): 1-9.
  • Purma Ç ve Serdaro¤lu M. 2006. Akıllı Ambalajlama Sistemlerinin Gıda Sanayinde Kullanımı, Türkiye 9. Gıda Kongresi, 24-26 Mayıs 2006, Bolu, s49-52.
  • Vaikousi H, Biliaderis CG ve Koutsoumanis KP. 2009. Applicability of a microbial time temperature indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat, Int J Food Microbiol, 133 (3): 272–278.
  • Tarhan Ö, Gökmen V ve Harsa fi. 2010. Nanoteknolojinin Gıda Bilim ve Teknolojisi Alanındaki Uygulamaları, GIDA, 35 (2): 219-225. 13. Joseph T ve Morrison M. 2006. Nanotechnology in agriculture and food, A Nanoforum Report, April, s8.
  • Sözer N ve Kokini J L. 2012. The applications of nanotechnology, Chemical Analysis of Food: Techniques and Applications, Pico Y (ed), Academic Press, Oxford, UK, s145-170.
  • Duncan T V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, Journal of Colloid and Interface Science, 363 (1): 1-24. 16. Sürengil G ve Kılınç B. 2011. Gıda - Ambalaj Sektöründe Nanoteknolojik Uygulamalar ve Su Ürünleri Açısından Önemi, Journal of Fisheries Sciences, 5 (4): 317-325.
  • Chaudhry Q ve Castle L. 2011. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries, Trends in Food Science & Technology, 22, 595-603.
  • Imran M, Revol-Junelles A M. ve Desorbry S. 2012. Adaptations of Food Packaging Trends via Nanotechnology, Arvanitoyannis IS(ed) Modified Atmosphere and Active Packaging Technologies, CRC Press, Boca Raton, USA, s663-683.
  • Dursun S, Erkan N ve Yefliltafl M. 2010. Do¤al Biyopolimer Bazlı (Biyobozunur) Nanokompozit Filmler Ve Su Ürünlerindeki Uygulamaları, Journal of Fisheries Sciences, 4 (1): 50-77.
  • Mahalik N P ve Nambiar A N. 2010. Trends in food packaging and manufacturing systems and technology, Trends in Food Science & Technology, 21 (3): 117-128.
  • Gu H W, Ho P L, Tong E, Wang L ve Xu B. 2003. Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano Letters, 3 (9): 1261-1263.
  • Huang L, Li D Q, Lin Y J, Wei M, Evans D G ve Duan X. 2005. Controllable preparation of nano-MgO and investigation of its bactericidal properties, J Inorg Biochem, 99 (5): 986-993.
  • Hauser C, Stelter C ve Wunderlich J. 2012. Aspects of an antimicrobial packaging film and its application on food, 5th International Symposium on Food Packaging Poster Presentation, 14-16 Kasım, Berlin.
  • Theinsathid P, Visessanguan W, Kingcha Y ve Keeratipibul S. 2011. Antimicrobial effectiveness of biobased film against Escherichia coli 0157:H7, Listeria monocytogenes and Salmonella typhimurium, Advance Journal of Food Science and Technology, 3 (4): 294-302.
  • Azeredo H M C. 2009. Nanocomposites for food packaging applications, Food Res Int, 42 (9:)1240-1253.
  • Mills A ve Hazafy D. 2009. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator, Sensor and Actuators B: Chemical, 136 (2): 344-349.
  • PAC, 1992, 64, 143 (Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992)) s 148.
  • Otlu B. 2011. Biyosensörler: Biyoreseptör Moleküller, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazı¤, Turkey, s5-7.
  • Yang M, Kostov Y ve Rasooly A. (2008). Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food, Int J Food Microbiol, 127, 78–83.
  • Zhang W, Zhang X, Zhang L ve Chen G. 2014. Fabrication of carbon nanotube-nickel nanoparticle hybrid pasteelectrodes for electrochemical sensing of carbohydrates, Sensors and Actuators B, 192, 459-466.
  • Muhamad I I B. 2005. Study of an active antimicrobial system using a bio-switch concept, Research Management Centre University Technology, Final Report, Malaysia, s43.
  • Huff K. 2009. Active and intelligent packaging: innovations for the future. http://www.iopp.org/ files/public/VirginiaTechKarleighHuff.pdf. (Eriflim tarihi: 12.01.2014).
  • Yılmaz S. 2008. So¤utma Uygulamaları ‹çin Faz De¤ifltiren Maddelerde Termal Enerji Depolama, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi, Adana, Türkiye, s68.
  • Sarı A. 2011. Faz De¤iflimi Yoluyla Isıl Enerjinin Depolanması ve Bu Alanda Yapılan Çalıflmalar, Kimya Lisans Ö¤rencileri Arafltırma Projesi E¤itimi Çalıfltayı, Kimya-2 (Çalıfltay 2011), 20-28 Temmuz, Çanakkale, s68.
  • Yılmazo¤lu M Z. 2010. Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması, Politeknik Dergisi 13 (1): 33-42.
  • Cardenas B ve Leon N. 2013. High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renewable and Sustainable Energy Reviews, 27, 724-737.
  • Rathod M K ve Banerjee J. 2013. Thermal stability of phase change materials used in latent heat energy storage systems: a review, Renewable and Sustainable Energy Reviews, 18, 246-258.
  • Kuznik F, David D, Johannes K ve Roux J. 2011. A review on phase change materials integrated in building walls, Renewable and Sustainable Energy Reviews, 15 (1): 379-391.
  • Sun X, Zhang Q, Medina M A, Liu Y ve Liao S. 2014. A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations in China, Applied Energy, 117, 95-103.
  • Nomura T, Okinaka N ve Akiyama T. 2010. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant, Resour Conserv Recycl, 54 (11):1000-1006. 43. Gin B ve Farid M M. 2010. The use of PCM panels to ımprove storage condition of frozen food, J Food Eng, 100 (2): 372-376.
  • Shukla A, Buddhi D ve Sawhney R L. 2009. Solar water heaters with phase change material thermal energy storage medium: a review, Renewable and Sustainable Energy Reviews13 (8): 2119-2125.
  • Jurinak J J ve Abdel-Khalik, S I. 1978. Properties optimization for phase-change energy storage in air-based solar heating systems. Solar Energy, 21 (5): 377-383.
  • Konuklu Y. 2008. Mikrokapsüllenmifl Faz De¤ifltiren Maddelerde Termal Enerji Depolama ile Binalarda Enerji Tasarrufu, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Doktora Tezi, Adana, Türkiye, s171.
  • Suppes G J, Goff M J ve Lopes S. 2003. Latent heat characteristic of fatty acid derivatives pursuant phase change material applications, Chemical Engineering Science, 58 (9): 1751-1763.
  • Karaipekli A, Sarı A. ve Biçer A. 2010. Binalarda Isıl Enerji Depolama ‹çin Ya¤ Asidi/Vermikülit Kompozit Karıflımlarının Hazırlanması ve Enerji Depolama Özelliklerinin Belirlenmesi, 9. Ulusal Kimya Mühendisli¤i Kongresi, Gazi Üniversitesi, 22-25 Haziran, Ankara, s9.
  • Ryu H W, Woo S W, Shin B C ve Kim S. D. 1992. Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Solar Energy Materials and Solar Cells, 27, 161-172.
  • Farid M M, Khudhair A M, Razack S A K ve Al-Hallaj S. 2004. A review on phase change energy storage materials and applications, Energy Conversion & Management, 45 (9-10): 1597-1615.
  • Salunkhe P B ve Shembekar P S. 2012. A review on effect of phase change material encapsulation on the thermal performance of a system, Renewable and Sustainable Energy Reviews, 16 (8): 5603-5616.
  • Fang G, Li H, Yang F, Liu X. ve Wu S. 2009. Preparation and characterization of nano- encapsulated n-tetradecane as phase change material for thermal energy storage, Chem Eng J, 153 (1-3): 217-221.
  • Li M. 2013. A nano-graphite/paraffin phase change material with high thermal conductivity, Applied Energy, 106, 25-30.
  • Wang J, Xie H, Xin Z, Li Y ve Chen L. 2010. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy, 84 (2): 339-344.
  • Tumuluri K, Alvarado J L, Taherian H ve Marsh C. 2011. Thermal performance of a novel heat transfer fluid containing multiwalled carbon nanotubes and microencapsulated phase change materials, International Journal of Heat and Mass Transfer, 54 (25-26): 5554-5567.
  • fiahan N ve Paksoy H Ö. 2013. Faz De¤ifltiren Maddelerin Nano Malzemelerle Kullanımının Arafltırılması, Ç.Ü Fen ve Mühendislik Bilimleri Dergisi, 29 (4): 24-31.
  • Li M, Wu Z ve Tan J. 2012. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method, Applied Energy, 92, 456-461.
  • Chen C, Liu S, Liu W, Zhao Y ve Lu Y. 2012. Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers, Solar Energy Materials & Solar Cells, 96, 202-209.
  • Pérez-Masiá R, Lopez-Rubio A ve Lagaron J M. 2013. Development of zein-based heat-management structures for smart food packaging, Food Hydrocoll, 30, 182-191.
  • Johnston J H, Grindrod J E, Dodds M ve Schimitschek K. 2007. The use and performance of a nano-structured calcium silicate phase change material for thermal buffering in food packaging, 61st Appita Annual Conference and Exhibition, Australia 6-9 May, 219-224.
  • Johnston J H, Grindrod J E, Dodds M ve Schimitschek K. 2008. Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging, Current Applied Physics, 8, 508-511.
  • Johnston J H. 2011. Nano-structured calcium silicate phase change materials for packaging temperature sensitive products, Dr. John Cuppoletti (Ed.), Nanocomposites and Polymers with Analytical Methods, Intech, New Zelland, 15, 361-375.
  • Melone L, Altomare L, Cigada A ve De Nardo L. 2012. Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation, Applied Energy, 89, 339-346.

Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri

Yıl 2014, Cilt: 39 Sayı: 6, 371 - 378, 01.12.2014

Öz

Tüketicilerin gıda güvenliği ve kalitesi konusundaki bilinçlerinin ve taleplerinin artması, araştırmacıları ve gıda endüstrisini yeni eğilimlere yönlendirmektedir. Yeni teknolojilerin ve değişik özelliklere sahip materyallerin kullanımı ile gıda ambalajlarının fonksiyonları değiştirilebilmekte ve/veya arttırılabilmektedir. Son yılların en dikkat çeken teknolojisi nano ölçekli materyal üretimi ve bunların çeşitli malzemelerle birleştirilerek kompozitler elde edilmesi ile değişik alanlarda umut vadeden gelişmeler elde edilmektedir. Bu alanlardan biri aktif ve akıllı gıda ambalajlama sistemleridir. Nanoteknolojik uygulamalarla ve nanokompozitlerin ilave edilmesiyle tüketici ile iletişime geçen ve gıdayı daha güvenli bir şekilde tüketiciye ulaştıran ambalajların elde edilmesi mümkün olmaktadır. Bu derlemede nanoteknolojinin gıda ambalajlarındaki uygulamalarının özetlenmesine ilave olarak faz değişim materyallerinin (FDM) ve nanoteknolojik yöntemlerle özellikleri değiştirilmiş FDM’lerin gıda ambalajlarında kullanılabilirliğine değinilmiştir. Çeşitli alanlarda uygulamaları bulunan FDM’ler, gıdaların taşınma ve muhafazasında kullanılmaktadır. Nanoteknolojik uygulamalarla özellikleri geliştirilen FDM’lerin gıda ambalajlarında kullanımının artacağı öngörülmektedir.

Kaynakça

  • Özçandır S ve Yetim H. 2010. Akıllı Ambalajlama Teknolojisi ve Gıdalarda ‹zlenebilirlik, Gıda Teknolojileri Elektronik Dergisi5 (1): 1-11.
  • Kokangül G ve Fenercio¤lu H. 2012. Gıda Endüstrisinde Akıllı Ambalaj Kullanımı, Gıda Teknolojileri Elektronik Dergisi7 (2): 31-43.
  • Arıkan A. 2010. Gıda Ambalaj Malzemeleri, Ambalaj Bülteni, Temmuz-A¤ustos, s32-35.
  • Krochta J M. 2007. Food packaging, Handbook of Food Engineering, Second Edition, Heldman D R ve Lund D B (ed), CRC Press, Boca Raton, USA, s849-915.
  • Lee D S. 2011. Active packaging, Handbook of Frozen Food Processing and Packaging, Second Edition, Sun D V (ed), CRC Press, Dublin, Ireland, s819-834.
  • Ayana B ve Turhan K N. 2010. Gıda Ambalajlamasında Antimikrobiyel Madde ‹çeren Yenilebilir Filmler/ Kaplamalar ve Uygulamaları, GIDA, 35 (2): 151-158.
  • Cerisuelo J P, Bermudez J M, Aucejo S, Catala R, Gavara R ve Hermandez-Munoz P. 2013. Describing and modeling the release of an antimicrobial agent from an active PP/EVOH/PP package for salmon, J Food Eng, 116 (2): 352-361.
  • Vardin H ve Gamlı Ö F. 2006. So¤utulmufl Gıda Maddelerinin Ambalajlanması ve Aktif Ambalajlama Teknikleri, 9. Gıda Kongresi; 24-26 Mayıs 2006, Bolu, Türkiye, s41-44.
  • Yam K L, Takhistov P T ve Miltz J. 2005. Intelligent packaging: concepts and applications, J Food Sci, 70 (1): 1-9.
  • Purma Ç ve Serdaro¤lu M. 2006. Akıllı Ambalajlama Sistemlerinin Gıda Sanayinde Kullanımı, Türkiye 9. Gıda Kongresi, 24-26 Mayıs 2006, Bolu, s49-52.
  • Vaikousi H, Biliaderis CG ve Koutsoumanis KP. 2009. Applicability of a microbial time temperature indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat, Int J Food Microbiol, 133 (3): 272–278.
  • Tarhan Ö, Gökmen V ve Harsa fi. 2010. Nanoteknolojinin Gıda Bilim ve Teknolojisi Alanındaki Uygulamaları, GIDA, 35 (2): 219-225. 13. Joseph T ve Morrison M. 2006. Nanotechnology in agriculture and food, A Nanoforum Report, April, s8.
  • Sözer N ve Kokini J L. 2012. The applications of nanotechnology, Chemical Analysis of Food: Techniques and Applications, Pico Y (ed), Academic Press, Oxford, UK, s145-170.
  • Duncan T V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, Journal of Colloid and Interface Science, 363 (1): 1-24. 16. Sürengil G ve Kılınç B. 2011. Gıda - Ambalaj Sektöründe Nanoteknolojik Uygulamalar ve Su Ürünleri Açısından Önemi, Journal of Fisheries Sciences, 5 (4): 317-325.
  • Chaudhry Q ve Castle L. 2011. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries, Trends in Food Science & Technology, 22, 595-603.
  • Imran M, Revol-Junelles A M. ve Desorbry S. 2012. Adaptations of Food Packaging Trends via Nanotechnology, Arvanitoyannis IS(ed) Modified Atmosphere and Active Packaging Technologies, CRC Press, Boca Raton, USA, s663-683.
  • Dursun S, Erkan N ve Yefliltafl M. 2010. Do¤al Biyopolimer Bazlı (Biyobozunur) Nanokompozit Filmler Ve Su Ürünlerindeki Uygulamaları, Journal of Fisheries Sciences, 4 (1): 50-77.
  • Mahalik N P ve Nambiar A N. 2010. Trends in food packaging and manufacturing systems and technology, Trends in Food Science & Technology, 21 (3): 117-128.
  • Gu H W, Ho P L, Tong E, Wang L ve Xu B. 2003. Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano Letters, 3 (9): 1261-1263.
  • Huang L, Li D Q, Lin Y J, Wei M, Evans D G ve Duan X. 2005. Controllable preparation of nano-MgO and investigation of its bactericidal properties, J Inorg Biochem, 99 (5): 986-993.
  • Hauser C, Stelter C ve Wunderlich J. 2012. Aspects of an antimicrobial packaging film and its application on food, 5th International Symposium on Food Packaging Poster Presentation, 14-16 Kasım, Berlin.
  • Theinsathid P, Visessanguan W, Kingcha Y ve Keeratipibul S. 2011. Antimicrobial effectiveness of biobased film against Escherichia coli 0157:H7, Listeria monocytogenes and Salmonella typhimurium, Advance Journal of Food Science and Technology, 3 (4): 294-302.
  • Azeredo H M C. 2009. Nanocomposites for food packaging applications, Food Res Int, 42 (9:)1240-1253.
  • Mills A ve Hazafy D. 2009. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator, Sensor and Actuators B: Chemical, 136 (2): 344-349.
  • PAC, 1992, 64, 143 (Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992)) s 148.
  • Otlu B. 2011. Biyosensörler: Biyoreseptör Moleküller, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazı¤, Turkey, s5-7.
  • Yang M, Kostov Y ve Rasooly A. (2008). Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food, Int J Food Microbiol, 127, 78–83.
  • Zhang W, Zhang X, Zhang L ve Chen G. 2014. Fabrication of carbon nanotube-nickel nanoparticle hybrid pasteelectrodes for electrochemical sensing of carbohydrates, Sensors and Actuators B, 192, 459-466.
  • Muhamad I I B. 2005. Study of an active antimicrobial system using a bio-switch concept, Research Management Centre University Technology, Final Report, Malaysia, s43.
  • Huff K. 2009. Active and intelligent packaging: innovations for the future. http://www.iopp.org/ files/public/VirginiaTechKarleighHuff.pdf. (Eriflim tarihi: 12.01.2014).
  • Yılmaz S. 2008. So¤utma Uygulamaları ‹çin Faz De¤ifltiren Maddelerde Termal Enerji Depolama, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi, Adana, Türkiye, s68.
  • Sarı A. 2011. Faz De¤iflimi Yoluyla Isıl Enerjinin Depolanması ve Bu Alanda Yapılan Çalıflmalar, Kimya Lisans Ö¤rencileri Arafltırma Projesi E¤itimi Çalıfltayı, Kimya-2 (Çalıfltay 2011), 20-28 Temmuz, Çanakkale, s68.
  • Yılmazo¤lu M Z. 2010. Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması, Politeknik Dergisi 13 (1): 33-42.
  • Cardenas B ve Leon N. 2013. High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renewable and Sustainable Energy Reviews, 27, 724-737.
  • Rathod M K ve Banerjee J. 2013. Thermal stability of phase change materials used in latent heat energy storage systems: a review, Renewable and Sustainable Energy Reviews, 18, 246-258.
  • Kuznik F, David D, Johannes K ve Roux J. 2011. A review on phase change materials integrated in building walls, Renewable and Sustainable Energy Reviews, 15 (1): 379-391.
  • Sun X, Zhang Q, Medina M A, Liu Y ve Liao S. 2014. A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations in China, Applied Energy, 117, 95-103.
  • Nomura T, Okinaka N ve Akiyama T. 2010. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant, Resour Conserv Recycl, 54 (11):1000-1006. 43. Gin B ve Farid M M. 2010. The use of PCM panels to ımprove storage condition of frozen food, J Food Eng, 100 (2): 372-376.
  • Shukla A, Buddhi D ve Sawhney R L. 2009. Solar water heaters with phase change material thermal energy storage medium: a review, Renewable and Sustainable Energy Reviews13 (8): 2119-2125.
  • Jurinak J J ve Abdel-Khalik, S I. 1978. Properties optimization for phase-change energy storage in air-based solar heating systems. Solar Energy, 21 (5): 377-383.
  • Konuklu Y. 2008. Mikrokapsüllenmifl Faz De¤ifltiren Maddelerde Termal Enerji Depolama ile Binalarda Enerji Tasarrufu, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Doktora Tezi, Adana, Türkiye, s171.
  • Suppes G J, Goff M J ve Lopes S. 2003. Latent heat characteristic of fatty acid derivatives pursuant phase change material applications, Chemical Engineering Science, 58 (9): 1751-1763.
  • Karaipekli A, Sarı A. ve Biçer A. 2010. Binalarda Isıl Enerji Depolama ‹çin Ya¤ Asidi/Vermikülit Kompozit Karıflımlarının Hazırlanması ve Enerji Depolama Özelliklerinin Belirlenmesi, 9. Ulusal Kimya Mühendisli¤i Kongresi, Gazi Üniversitesi, 22-25 Haziran, Ankara, s9.
  • Ryu H W, Woo S W, Shin B C ve Kim S. D. 1992. Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Solar Energy Materials and Solar Cells, 27, 161-172.
  • Farid M M, Khudhair A M, Razack S A K ve Al-Hallaj S. 2004. A review on phase change energy storage materials and applications, Energy Conversion & Management, 45 (9-10): 1597-1615.
  • Salunkhe P B ve Shembekar P S. 2012. A review on effect of phase change material encapsulation on the thermal performance of a system, Renewable and Sustainable Energy Reviews, 16 (8): 5603-5616.
  • Fang G, Li H, Yang F, Liu X. ve Wu S. 2009. Preparation and characterization of nano- encapsulated n-tetradecane as phase change material for thermal energy storage, Chem Eng J, 153 (1-3): 217-221.
  • Li M. 2013. A nano-graphite/paraffin phase change material with high thermal conductivity, Applied Energy, 106, 25-30.
  • Wang J, Xie H, Xin Z, Li Y ve Chen L. 2010. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy, 84 (2): 339-344.
  • Tumuluri K, Alvarado J L, Taherian H ve Marsh C. 2011. Thermal performance of a novel heat transfer fluid containing multiwalled carbon nanotubes and microencapsulated phase change materials, International Journal of Heat and Mass Transfer, 54 (25-26): 5554-5567.
  • fiahan N ve Paksoy H Ö. 2013. Faz De¤ifltiren Maddelerin Nano Malzemelerle Kullanımının Arafltırılması, Ç.Ü Fen ve Mühendislik Bilimleri Dergisi, 29 (4): 24-31.
  • Li M, Wu Z ve Tan J. 2012. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method, Applied Energy, 92, 456-461.
  • Chen C, Liu S, Liu W, Zhao Y ve Lu Y. 2012. Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers, Solar Energy Materials & Solar Cells, 96, 202-209.
  • Pérez-Masiá R, Lopez-Rubio A ve Lagaron J M. 2013. Development of zein-based heat-management structures for smart food packaging, Food Hydrocoll, 30, 182-191.
  • Johnston J H, Grindrod J E, Dodds M ve Schimitschek K. 2007. The use and performance of a nano-structured calcium silicate phase change material for thermal buffering in food packaging, 61st Appita Annual Conference and Exhibition, Australia 6-9 May, 219-224.
  • Johnston J H, Grindrod J E, Dodds M ve Schimitschek K. 2008. Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging, Current Applied Physics, 8, 508-511.
  • Johnston J H. 2011. Nano-structured calcium silicate phase change materials for packaging temperature sensitive products, Dr. John Cuppoletti (Ed.), Nanocomposites and Polymers with Analytical Methods, Intech, New Zelland, 15, 361-375.
  • Melone L, Altomare L, Cigada A ve De Nardo L. 2012. Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation, Applied Energy, 89, 339-346.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Merve Yılmazer Bu kişi benim

Filiz Altay

Yayımlanma Tarihi 1 Aralık 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 39 Sayı: 6

Kaynak Göster

APA Yılmazer, M. ., & Altay, F. . (2014). Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri. Gıda, 39(6), 371-378.
AMA Yılmazer M, Altay F. Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri. GIDA. Aralık 2014;39(6):371-378.
Chicago Yılmazer, Merve, ve Filiz Altay. “Gıda Ambalajlarında Nanoteknolojik Uygulamalar Ve Faz Değişim Materyalleri”. Gıda 39, sy. 6 (Aralık 2014): 371-78.
EndNote Yılmazer M, Altay F (01 Aralık 2014) Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri. Gıda 39 6 371–378.
IEEE M. . Yılmazer ve F. . Altay, “Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri”, GIDA, c. 39, sy. 6, ss. 371–378, 2014.
ISNAD Yılmazer, Merve - Altay, Filiz. “Gıda Ambalajlarında Nanoteknolojik Uygulamalar Ve Faz Değişim Materyalleri”. Gıda 39/6 (Aralık 2014), 371-378.
JAMA Yılmazer M, Altay F. Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri. GIDA. 2014;39:371–378.
MLA Yılmazer, Merve ve Filiz Altay. “Gıda Ambalajlarında Nanoteknolojik Uygulamalar Ve Faz Değişim Materyalleri”. Gıda, c. 39, sy. 6, 2014, ss. 371-8.
Vancouver Yılmazer M, Altay F. Gıda Ambalajlarında Nanoteknolojik Uygulamalar ve Faz Değişim Materyalleri. GIDA. 2014;39(6):371-8.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/