Derleme
BibTex RIS Kaynak Göster

QUALITY OF FRUIT AND VEGETABLE JUICES TREATED BY PULSED LIGHT

Yıl 2022, Cilt: 47 Sayı: 4, 663 - 678, 30.08.2022
https://doi.org/10.15237/gida.GD22029

Öz

Nowadays, consumers’ tendency has been increased toward fresh-like minimally processed, and healthier products. Since thermal processes which have been applied in food preservation from the past to the present, like pasteurization and sterilization, can cause food quality losses, researchers have focused on non-thermal processing technologies as an alternative to traditional thermal treatments. Recently, the effects of pulsed light, UV-C irradiation, pulsed electric field, ultrasound, high pressure, ohmic heating, and similar applications on food quality have been widely investigated. It was reported that pulsed light treatment among non-thermal processing technologies had many advantages over other treatments, especially in terms of preserving the quality of fruit and vegetable juices. Moreover, it was signified that the process could preserve food microbial quality without compromising the physicochemical and sensory attributes of the product. Therefore, pulsed light treatment has the potential to be used as a non-thermal food preservation technique in fruit and vegetable juices.

Kaynakça

  • Abuagela, M.O, Iqdiam, B.M., Mostafa, H., Marshall, S.M., Yagiz, Y., Marshall, M.R., Gu, L., Sarnoski, P. (2019). Combined effects of citric acid and pulsed light treatments to degrade B-aflatoxins in peanut. Food and Bioproducts Processing 117: 396-403, doi: 10.1016/j.fbp.2019.08.011.
  • Aksu, M.İ, Erdemir, E., Turan, E., Sat, İ.G. (2020). Effects of red beet extracts on protein and lipid oxidation, colour, microbial, sensory properties and storage stability of Turkish pastırma. Journal of Stored Products Research 89: 101721, doi: 10.1016/j.jspr.2020.101721.
  • Alves Filho, E.G., Silva L.M.A., de Brito, E.S., Wurlitzer, N.J., Fernandes, F.A.N., Rabelo, M.C., Fonteles, T.V, Rodrigues, S. (2018). Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1 H qNMR and GC–MS coupled to chemometrics. Food Chemistry 265: 23-31, doi: 10.1016/j.foodchem.2018.05.038.
  • Anonymous (1996). Subpart B: Radiation and radiation Sources: Pulsed light for the treatment of food. Food and Drug Administration (FDA) Regulations 21 CFR Part 179 of 15 August 1996.
  • Anonymous (2001). Hazard analysis and critical control point (HACCP); Procedures for the safe and sanitary processing and importing of juice. Food and Drug Administration (FDA). Washington DC: Federal Register. 6137-6202 p of 19 January 2001.
  • Bhagat, B., Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT - Food Science and Technology 159: 113215, doi: 10.1016/j.lwt.2022.113215.
  • Bhavya, M.L., Hebbar, H.U. (2017). Pulsed light processing of foods for microbial safety. Food Quality and Safety 1(3): 187-201, doi: 10.1093/fqsafe/fyx017.
  • Blasco, R., Esteve, M.J., Frı́gola, A., Rodrigo, M. (2004). Ascorbic acid degradation kinetics in mushrooms in a high-temperature short-time process controlled by a thermoresistometer. LWT - Food Science and Technology 37(2): 171-175, doi: 10.1016/j.lwt.2003.08.003.
  • Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., Corbo, M.R. (2017). Nonthermal Technologies for fruit and vegetable juices and beverages: Owerview and advances. Comprehensive Reviews in Food Science and Food Safety 17(1): 2-62, doi: 10.1111/1541-4337.12299.
  • Cacace, D., Palmieri, L. (2014). Chapter13 - High-intensity pulsed light technology. In: Emerging Technologies for Food Processing, Sun, D.W. (chief ed.), Second Edition, Academic Press, pp: 239-258, doi: 10.1016/B978-0-12-411479-1.00013-9.
  • Caminiti, I.M., Noci, F., Morgan, D.J., Cronin D.A., Lyng, J.G. (2012). The effect of pulsed electric fields, ultraviolet light or high intensity light pulses in combination with manothermosonication on selected physico-chemical and sensory attributes of an orange and carrot juice blend. Food and Bioproduct Processing, 90(3): 442-448, doi: 10.1016/j.fbp.2011.11.006.
  • de Castro, D.R.G., Mar, J.M., da Silva, L.S., da Silva, K.A., Sanches, E.A., de Araújo Bezerra, J., Rodrigues, S., Fernandes, F.A.N., Campelo, P.H. (2020). Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Research International 131: 109044, doi: 10.1016/j.foodres.2020.109044.
  • Chakraborty, S., Mahale, S., Dhar, R., Basak, S. (2022). Development of a mixed fruit beverage and pulsed light treatment thereof to obtain a microbially safe and enzymatically stable product. Food Bioscience 45: 101508, doi: 10.1016/j.fbio.2021.101508.
  • Chen, D., Wiertzema, J.R., Peng, P., Cheng, Y., Wang, Y., Liu, J., Ma, Y., Mosher, W., Kang, M., Min, M., Chen, P., Baumler, D.J., Chen, C., Lee, L., Vickers, Z., Feirtag, J., Ruan, R. (2020). Catalytic intense pulse light inactivation of Cronobacter sakazakii and other pathogens in non-fat dry milk and wheat flour. Food Chemistry 33: 127420, doi: 10.1016/j.foodchem.2020.127420.
  • Denoya, G.I, Pataro, G., Ferrari, G. (2020). Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biology and Technology 160(14): 111055, doi: 10.1016/j.postharvbio.2019.111055.
  • Dhar, R., Basak, S., Chakraborty, S. (2022). Pasteurization of fruit juices by pulsed light treatment: A review on the microbial safety, enzymatic stability, and kinetic approach to process design. Comprehensive Reviews in Food Science and Food Safety 21(1): 499-540, doi: 10.1111/1541-4337.12864.
  • Dunn, J., Ott, T., Clark, W. (1995). Pulsed-light treatment of food and packaging. Food Technology 49(9): 95-98. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology 53(7): 813–821, doi: 10.1139/w07-042.
  • Esteve, M.J, Frigola, A. (2008). The effects of thermal and non-thermal processing on vitamin C, carotenoids, phenolic compounds and total antioxidant capacity in orange juice. Tree and Forestry Science and Biotechnology 2(1): 128-134.
  • Ferrario, M., Guerrero, S. (2016). Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf life of apple juice. Innovative Food Science & Emerging Technologies 34: 214-224, doi: 10.1016/j.ifset.2016.02.002.
  • Ferrario, M.I., Guerrero, S.N. (2018). Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels. Revista Argentina de Microbiología 50(1): 3-11, doi: 10.1016/j.ram.2017.04.002.
  • Hakguder-Taze, B., Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233: 370-377, doi: 10.1016/j.scienta.2018.02.012.
  • Huang, G., Sun, W., Dai, C., Sun, L., Tang, Y., He, R., Ma, H. (2020). Sterilization of Bacillus tequilensis isolated from aerogenic vinegar by intense pulsed light. LWT – Food Science and Technology 118: 108811, doi: 10.1016/j.lwt.2019.108811.
  • Illera, A.E., Sans, M.T., Benito-Román, O., Varona, S., Beltrán, S., Melgosa, R., Solaesa, A.G. (2018). Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innovative Food Science and Emerging Technologies, 47: 71-80, doi: 10.1016/j.ifset.2018.02.001.
  • Izmirlioglu, G., Ouyang, B., Demirci, A. (2020). Utilization of pulsed UV light for inactivation of Salmonella Enteritidis on shelled walnuts. LWT – Food Science and Technology, 134(10): 110023, doi: 10.1016/j.lwt.2020.110023.
  • Jaworska, D., Waszkiewicz-Robak, B., Kolanowski, W., Swiderski, F. (2005). Relative importance of texture properties in the sensory quality and acceptance of natural yoghurts. International Journal of Dairy Technology 58(1): 39-46, doi: 10.1111/j.1471-0307.2005.00178.x.
  • Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., Fernández-Gutiérrez, A. (2017). Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Critical Reviews in Food Science and Nutrition 57(3): 637-652, doi: 10.1080/10408398.2014.914019.
  • Juneja, V.K., Sofos, J.N. (Eds.) (2002). Control of Foodborne Microorganisms. CRC Press, New York, the U.S., 534 p. ISBN: 0-8247-0573-4.
  • Karaoglan, H.A., Keklik, N.M., Develi Işikli, N. (2017). Modeling inactivation of Candida inconspicua isolated from turnip juice using pulsed UV light. Journal of Food Process Engineering 40(2): e12418, doi: 10.1111/jfpe.12418.
  • Karaoglan, H.A., Keklik, N.M., Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology 56(1): 30-39, doi: 10.1007/s13197-018-3434-1.
  • Kaya, Z. (2018). Development of different koruk (unripe grape) products by using several processing techniques. Doctoral Thesis, İzmir Institute of Technology, İzmir, Türkiye, 290 p.
  • Kaya, Z., Unluturk, S., Martin-Belloso, O., Soliva-Fortuny, R. (2020). Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science and Emerging Technologies 66: 102517, doi: 10.1016/j.ifset.2020.102517.
  • Keener, L., Krishnamurthy, K. (2014). Shedding Light on Food Safety: Applications of Pulsed Light Processing. www.foodsafetymagazine.com/magazine-archive1/junejuly-2014/shedding-light-on-food-safety-applications-of-pulsed-light processing/?sf27523462=1 (Accessed 06 December 2020).
  • Keklik, N.M, Elik, A., Salgin, U., Demirci, A., Koçer, G. (2020). Surface decontamination of white cheese by pulsed UV light treatment. Journal of Food Safety and Food Quality 71(4): 86-92, doi: 10.2376/0003-925x-71-86.
  • Kramer, B., Wunderlich, J., Muranyi, P. (2019). Inactivation of Listeria innocua on packaged meat products by pulsed light. Food Packaging and Shelf Life 21: 100353, doi: 10.1016/j.fpsl.2019.100353.
  • Koutchma, T. (2018). Pulsed light for food and beverages preservation, quality and functionality. In: Reference Module in Food Science, Knoerzer, K. (chief ed.), Elsevier, Canada, pp. 1-8, doi: 10.1016/B978-0-08-100596-5.22454-2.
  • Koutchma, T. (2019). Ultraviolet light in food technology: principles and applications. CRC Press, New York, the U.S., 278 p. ISBN: 978-1-138-08142-0.
  • Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M.T., Sackey, A.S., Wu, M., Xiao, L. (2018). Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. LWT – Food Science and Technology 92: 61-66, doi: 10.1016/j.lwt.2018.02.016.
  • Lee, H.S., Coates, G.A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT - Food Science and Technology 36(1): 153-156, doi: 10.1016/S0023-6438(02)00087-7.
  • Lee, S.H., Park, H.H., Min, S.C. (2020). Pulsed light plasma treatment for the inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in red pepper flakes. Food Control 118: 107401, doi: 10.1016/j.foodcont.2020.107401.
  • Linhares, M.F.D., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V.,Wurlitzer, N.J, Brito, E.S., Fernandes, F.A.N., Rodrigyes, S. (2020). Thermal and non-thermal processing effect on açai juice composition. Food Research International 136: 109506, doi: 10.1016/j.foodres.2020.109506.
  • MacGregor, S.J., Rowan, N.J., Mcllvaney, L., Anderson, J.G., Fouracre, R.A., Farish, O. (1998). Light inactivation of food-related pathogenic bacteria using a pulsed power source. Letters in Applied Microbiology 27(2): 67–70, doi: 10.1046/j.1472-765x.1998.00399.x.
  • Malik, S. (2018). Characterization of novel pulsed UV-light systems for inactivation of Listeria monocytogenes in apple juice and on apple surface. Master Thesis, Illinois Institue of Technology, Chicago, Illinois, 50 p.
  • Manso, M.C., Oliveira, F.A.R, Oliveira, J.C., Frías, J.M. (2001). Modelling ascorbic acid thermal degradation and browning in orange juice under aerobic conditions. International Journal of Food Science Technology 36(3): 303-312, doi: 10.1046/j.1365-2621.2001.t01-1-00460.x.
  • Marriott, N.G, Schilling, M.W, Gravani, R.B. (2018). Principles of food sanitation. Sixth Edition, Springer International Publishing AG, Cham, Switzerland, 436 p. ISBN: 978-3-319-67164-2.
  • Mukhopadhyay, S., Sokorai, K., Ukuku, D.O., Fan, X., Olanya, M., Juneja. V. (2019). Effects of pulsed light and sanitizer wash combination on inactivation of Escherichia coli O157:H7, microbial loads and apparent quality of spinach leaves. Food Microbiology 82: 127-134, doi: 10.1016/j.fm.2019.01.022.
  • Orcajo, J., Lavilla, M., Martínez-de-Marañón, I. (2019). Effect of Pulsed Light treatment on β-lactoglobulin immunoreactivity. LWT - Food Science and Technology 112: 108231, doi: 10.1016/j.lwt.2019.05.129.
  • Ozer, N.P, Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science Technology 41(4): 354-360, doi: 10.1111/j.1365-2621.2005.01071.x.
  • Paixão, L.M.N., Fonteles, T.V., Oliveira, V.S., Fernandes, F.A.N., Rodrigues, S. (2019). Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology 12(2): 110–121, doi: 10.1007/s11947-018-2197-z.
  • Palgan, I, Caminiti, I.M., Muñoz, A., Noci F., Whyte, P., Morgan, D.J., Cronin, D.A., Lyng, J.G. (2011). Effectiveness of high intensity light pulses (hilp) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiology 28(1): 14-20, doi: 10.1016/j.fm.2010.07.023.
  • Pataro, G., Muñoz, A., Palgan, I., Noci, F., Ferrari, G., Lyng, J.G. (2011). Bacterial inactivation in fruit juices using a continuous flow Pulsed Light (PL) system. Food Research International, 44(6): 1642-1648, doi: 10.1016/j.foodres.2011.04.048.
  • Pellicer, J.A., Navarro, P., Gómez-López, V.M. (2019). Pulsed light inactivation of polygalacturonase. Food Chemistry, 271: 109-113, doi: 10.1016/j.foodchem.2018.07.194.
  • Pellicer, J.A., Navarro, P., Gómez-López, V.M. (2020). Pectin methylesterase inactivation by pulsed light. Innovative Food Science & Emerging Technologies 62: 102366, doi: 10.1016/j.ifset.2020.102366.
  • Pierscianowski, J., Popović, V., Biancaniello, M., Bissonnette, S., Zhu, Y., Koutchma, T. (2021). Continuous-flow UV-C processing of kale juice for the inactivation of E. coli and assessment of quality parameters. Food Research International 140: 110085, doi: 10.1016/j.foodres.2020.110085.
  • Pohl, P., Dzimitrowicz, A., Cyganowski, P., Jamroz, P. (2022). Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chemistry 375: 131831, doi: 10.1016/j.foodchem.2021.131831.
  • Porto, E., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V., do Nascimento, R.B.R., Fernandes, F.A.N., de Brito, E.S., Rodrigues, S. (2020). Ozone and plasma processing effect on green coconut water. Food Research International 131: 109000, doi: 10.1016/j.foodres.2020.109000.
  • Preetha, P. Venugobal, A.P., Varadharaju, N., Kennedy, Z.J. (2017). Inactivation of Escherichia coli in tender coconut (Cocos Nucifera L.) water by pulsed light treatment. International Journal of Current Microbiology and Applied Sciences 6(7): 1453-1461, doi: 10.20546/ijcmas.2017.607.174.
  • Preetha, P., Pandiselvam, R., Varadharaju, N., Kennedy, Z.J, Balakrishnan, M., Kothakota, A. (2021). Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control 121: 107547, doi: 10.1016/j.foodcont.2020.107547.
  • Rao, N. (2018). Study of the demand supply gap in the production of agricultural products and agro processing industry and foresee the emerging technology from investment point of view. International Journal of Research and Analytical Reviews, 5(3): 1475-1484.
  • Ricciardi, F.E., Plazzotta, S., Conte, A., Manzocco, L. (2021). Effect of pulsed light on microbial inactivation, sensory properties and protein structure of fresh ricotta cheese. LWT - Food Science and Technology 139: 110556, doi: 10.1016/j.lwt.2020.110556.
  • Rodríguez-Bencomo, J.J., Sanchis, V., Viñas, I., Martín-Belloso, O., Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry 315: 126283, doi: 10.1016/j.foodchem.2020.126283.
  • Rodríguez, Ó., Gomes, W.F., Rodrigues, S., Fernandes, F.A.N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT - Food Science and Technology 84: 457–463, doi: 10.1016/j.lwt.2017.06.010.
  • dos Santos Aguilar, J.G. (2019). Pulsed light treatment in food. Chemical Reports 1(2): 108-111, doi: 10.25082/CR.2019.02.007.
  • Sharrer, M.J., Summerfelt, S.T., Bullock, G.L., Gleason, L.E., Taeuber, J. (2005). Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Engineering 33(2): 135-149, doi: 10.1016/j.aquaeng.2004.12.001.
  • Silva, E.K., Meireles, M.A.A., Saldaña, M.D.A. (2020). Supercritical carbon dioxide technology: A promising technique for the nonthermal processing of freshly fruit and vegetable juices. Trends in Food Science and Technology, 97: 381-390, doi: 10.1016/j.tifs.2020.01.025.
  • Syamaladevi, R.M., Lupien, S.L., Bhunia, K., Sablani, S.S., Dugan, F., Rasco, B., Killinger, K., Dhingra, A., Ross, C. (2014). UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage. Postharvest Biology and Technology 87: 27-32, doi: 10.1016/j.postharvbio.2013.08.005.
  • Tao, T., Ding, C., Han, N., Cui, Y., Liu, X., Zhang, C. (2019). Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: Effects on quality attributes during storage. Food Packaging and Shelf Life 21: 100358, doi: 10.1016/j.fpsl.2019.100358.
  • Taştan, Ö. (2019). Berrak elma suyunun ısıl olmayan pastörizasyonuna yönelik yüksek yoğunluklu vurgulu ışık, düşük voltajlı elektriksel işlem ve doğal antimikrobiyal maddelerin kombine kullanımının incelenmesi. Ege Üniversitesi Gıda Mühendisliği Anabilim Dalı Doktora Tezi, İzmir, Türkiye, 182 s.
  • Tomasevic, I., Rajkovic, A. (2005). The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses: A systematic review. Procedia Food Science 5: 285-288, doi: 10.1016/j.profoo.2015.09.081.
  • Vargas-Ramella, M., Pateiro, M., Gavahian, M., Franco, D., Zhang, W., Khaneghah, A.M., Guerrero- Sánchez, Y., Lorenzo, J.M. (2021). Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends in Food Science and Technology, 115: 1-11, doi: 10.1016/j.tifs.2021.06.037.
  • Vićić, M., Sobotka, L.G., Wiliamson, J.F., Charity, R.J., Elson, J.M. (2003). Fast pulsed UV light source and calibration of non-linear photomultiplier response. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 507(3): 636-642, doi: 10.1016/S0168-9002(03)01376-7.
  • Vollmer, K., Chakraborty, S., Bhalerao, P.P., Carle, R., Frank, J., Steingass, C.B. (2020). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology 13: 1095-1109, doi: 10.1007/s11947-020-02460-7.
  • Wang, Y., Li, L., Wang, B., Xu, J. (2022). Selective enzyme inactivation in a simulated system and in cabbage juice using electrospray technology. Innovative Food Science & Emerging Technologies, 75: 102875, doi: 10.1016/j.ifset.2021.102875.
  • Wang, B., Zhang, Y., Venkitasamy, C., Wu, B., Zhongli, P., Ma, H. (2017). Effect of pulsed light on activity and structural changes of horseradish peroxidase. Food Chemistry 234: 20-25, doi: 10.1016/j.foodchem.2017.04.149.
  • Wu, J., Ouyang, Q., Park, B., Kang, R., Wang, Z., Wang, L., Chen, Q. (2022). Physicochemical indicators coupled with multivariate analysis for comprehensive evaluation of matcha sensory quality. Food Chemistry 371(1): 131100, doi: 10.1016/j.foodchem.2021.131100.
  • Xu, F., Wang, B., Hong, C., Telebielaigen, S., Nsor-Atindana, J., Duan, Y., Zhong, F. (2019). Optimization of spiral continuous flow-through pulse light sterilization for Escherichia coli in red grape juice by response surface methodology. Food Control 105: 8-12, doi: 10.106/j.foodcont.2019.04.023.
  • Zhang, H.Q, Barbosa-Cánovas, G.V., Balasubramaniam, V.M, Dunne, C.P., Farkas, D. F., Yuan, J.T.C. (eds.) (2011). Nonthermal Processing Technologies for Food. Blackwell Publishing Ltd. and Institue of Food Technologists, the U.S., 596 p. ISBN: 978-0-8138-1668-5.
  • Zhu, N., Wang, K., Zhang, S., Zhao, B., Yang, J., Wang, S. (2021). Application of artificial neural networks to predict multiple quality of dry-cured ham based on protein degradation. Food Chemistry 344: 128586, doi: 10.1016/j.foodchem.2020.128586.
  • Zhu, Y., Li, C., Cui, H., Lin, L. (2019). Antimicrobial mechanism of pulsed light for the control of E.coli O157:57 and its application in carrot juice. Food Control 106(33): 106751, doi: 10.1016/j.foodcont.106751.

VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ

Yıl 2022, Cilt: 47 Sayı: 4, 663 - 678, 30.08.2022
https://doi.org/10.15237/gida.GD22029

Öz

Günümüzde tazeye en yakın, az işlem görmüş, daha sağlıklı ürün tüketme eğilimi artarak devam etmektedir. Geçmişten günümüze gıda muhafazasında uygulanmakta olan pastörizasyon ve sterilizasyon gibi termal işlemler sağladıkları yararın yanında gıda bileşiminde birtakım kayıplara neden olabildiğinden, araştırmacılar geleneksel termal işlemlere alternatif olarak ısıl olmayan işleme teknolojilerine yoğunlaşmıştır. Son yıllarda vurgulu ışık, UV-C ışınlama, vurgulu elektrik alan, ultrases, yüksek basınç, ohmik ısıtma ve benzeri uygulamaların gıda kalitesi üzerine etkileri geniş çapta araştırılmaktadır. Özellikle meyve ve sebze sularının işlenmesinde termal olmayan teknolojilerden vurgulu ışığın kalitenin korunması üzerine avantajları olduğu yapılan birçok araştırmada tespit edilmiştir. Ayrıca, prosesin, ürünün fizikokimyasal ve duyusal özelliklerinden ödün vermeden gıdanın mikrobiyal kalitesini koruduğu gösterilmiştir. Bundan dolayı, vurgulu ışık uygulamasının ısıl olmayan bir gıda muhafaza yöntemi olarak meyve ve sebze sularında kullanılma potansiyeli vardır.

Kaynakça

  • Abuagela, M.O, Iqdiam, B.M., Mostafa, H., Marshall, S.M., Yagiz, Y., Marshall, M.R., Gu, L., Sarnoski, P. (2019). Combined effects of citric acid and pulsed light treatments to degrade B-aflatoxins in peanut. Food and Bioproducts Processing 117: 396-403, doi: 10.1016/j.fbp.2019.08.011.
  • Aksu, M.İ, Erdemir, E., Turan, E., Sat, İ.G. (2020). Effects of red beet extracts on protein and lipid oxidation, colour, microbial, sensory properties and storage stability of Turkish pastırma. Journal of Stored Products Research 89: 101721, doi: 10.1016/j.jspr.2020.101721.
  • Alves Filho, E.G., Silva L.M.A., de Brito, E.S., Wurlitzer, N.J., Fernandes, F.A.N., Rabelo, M.C., Fonteles, T.V, Rodrigues, S. (2018). Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1 H qNMR and GC–MS coupled to chemometrics. Food Chemistry 265: 23-31, doi: 10.1016/j.foodchem.2018.05.038.
  • Anonymous (1996). Subpart B: Radiation and radiation Sources: Pulsed light for the treatment of food. Food and Drug Administration (FDA) Regulations 21 CFR Part 179 of 15 August 1996.
  • Anonymous (2001). Hazard analysis and critical control point (HACCP); Procedures for the safe and sanitary processing and importing of juice. Food and Drug Administration (FDA). Washington DC: Federal Register. 6137-6202 p of 19 January 2001.
  • Bhagat, B., Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT - Food Science and Technology 159: 113215, doi: 10.1016/j.lwt.2022.113215.
  • Bhavya, M.L., Hebbar, H.U. (2017). Pulsed light processing of foods for microbial safety. Food Quality and Safety 1(3): 187-201, doi: 10.1093/fqsafe/fyx017.
  • Blasco, R., Esteve, M.J., Frı́gola, A., Rodrigo, M. (2004). Ascorbic acid degradation kinetics in mushrooms in a high-temperature short-time process controlled by a thermoresistometer. LWT - Food Science and Technology 37(2): 171-175, doi: 10.1016/j.lwt.2003.08.003.
  • Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., Corbo, M.R. (2017). Nonthermal Technologies for fruit and vegetable juices and beverages: Owerview and advances. Comprehensive Reviews in Food Science and Food Safety 17(1): 2-62, doi: 10.1111/1541-4337.12299.
  • Cacace, D., Palmieri, L. (2014). Chapter13 - High-intensity pulsed light technology. In: Emerging Technologies for Food Processing, Sun, D.W. (chief ed.), Second Edition, Academic Press, pp: 239-258, doi: 10.1016/B978-0-12-411479-1.00013-9.
  • Caminiti, I.M., Noci, F., Morgan, D.J., Cronin D.A., Lyng, J.G. (2012). The effect of pulsed electric fields, ultraviolet light or high intensity light pulses in combination with manothermosonication on selected physico-chemical and sensory attributes of an orange and carrot juice blend. Food and Bioproduct Processing, 90(3): 442-448, doi: 10.1016/j.fbp.2011.11.006.
  • de Castro, D.R.G., Mar, J.M., da Silva, L.S., da Silva, K.A., Sanches, E.A., de Araújo Bezerra, J., Rodrigues, S., Fernandes, F.A.N., Campelo, P.H. (2020). Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Research International 131: 109044, doi: 10.1016/j.foodres.2020.109044.
  • Chakraborty, S., Mahale, S., Dhar, R., Basak, S. (2022). Development of a mixed fruit beverage and pulsed light treatment thereof to obtain a microbially safe and enzymatically stable product. Food Bioscience 45: 101508, doi: 10.1016/j.fbio.2021.101508.
  • Chen, D., Wiertzema, J.R., Peng, P., Cheng, Y., Wang, Y., Liu, J., Ma, Y., Mosher, W., Kang, M., Min, M., Chen, P., Baumler, D.J., Chen, C., Lee, L., Vickers, Z., Feirtag, J., Ruan, R. (2020). Catalytic intense pulse light inactivation of Cronobacter sakazakii and other pathogens in non-fat dry milk and wheat flour. Food Chemistry 33: 127420, doi: 10.1016/j.foodchem.2020.127420.
  • Denoya, G.I, Pataro, G., Ferrari, G. (2020). Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biology and Technology 160(14): 111055, doi: 10.1016/j.postharvbio.2019.111055.
  • Dhar, R., Basak, S., Chakraborty, S. (2022). Pasteurization of fruit juices by pulsed light treatment: A review on the microbial safety, enzymatic stability, and kinetic approach to process design. Comprehensive Reviews in Food Science and Food Safety 21(1): 499-540, doi: 10.1111/1541-4337.12864.
  • Dunn, J., Ott, T., Clark, W. (1995). Pulsed-light treatment of food and packaging. Food Technology 49(9): 95-98. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology 53(7): 813–821, doi: 10.1139/w07-042.
  • Esteve, M.J, Frigola, A. (2008). The effects of thermal and non-thermal processing on vitamin C, carotenoids, phenolic compounds and total antioxidant capacity in orange juice. Tree and Forestry Science and Biotechnology 2(1): 128-134.
  • Ferrario, M., Guerrero, S. (2016). Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf life of apple juice. Innovative Food Science & Emerging Technologies 34: 214-224, doi: 10.1016/j.ifset.2016.02.002.
  • Ferrario, M.I., Guerrero, S.N. (2018). Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels. Revista Argentina de Microbiología 50(1): 3-11, doi: 10.1016/j.ram.2017.04.002.
  • Hakguder-Taze, B., Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233: 370-377, doi: 10.1016/j.scienta.2018.02.012.
  • Huang, G., Sun, W., Dai, C., Sun, L., Tang, Y., He, R., Ma, H. (2020). Sterilization of Bacillus tequilensis isolated from aerogenic vinegar by intense pulsed light. LWT – Food Science and Technology 118: 108811, doi: 10.1016/j.lwt.2019.108811.
  • Illera, A.E., Sans, M.T., Benito-Román, O., Varona, S., Beltrán, S., Melgosa, R., Solaesa, A.G. (2018). Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innovative Food Science and Emerging Technologies, 47: 71-80, doi: 10.1016/j.ifset.2018.02.001.
  • Izmirlioglu, G., Ouyang, B., Demirci, A. (2020). Utilization of pulsed UV light for inactivation of Salmonella Enteritidis on shelled walnuts. LWT – Food Science and Technology, 134(10): 110023, doi: 10.1016/j.lwt.2020.110023.
  • Jaworska, D., Waszkiewicz-Robak, B., Kolanowski, W., Swiderski, F. (2005). Relative importance of texture properties in the sensory quality and acceptance of natural yoghurts. International Journal of Dairy Technology 58(1): 39-46, doi: 10.1111/j.1471-0307.2005.00178.x.
  • Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., Fernández-Gutiérrez, A. (2017). Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Critical Reviews in Food Science and Nutrition 57(3): 637-652, doi: 10.1080/10408398.2014.914019.
  • Juneja, V.K., Sofos, J.N. (Eds.) (2002). Control of Foodborne Microorganisms. CRC Press, New York, the U.S., 534 p. ISBN: 0-8247-0573-4.
  • Karaoglan, H.A., Keklik, N.M., Develi Işikli, N. (2017). Modeling inactivation of Candida inconspicua isolated from turnip juice using pulsed UV light. Journal of Food Process Engineering 40(2): e12418, doi: 10.1111/jfpe.12418.
  • Karaoglan, H.A., Keklik, N.M., Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology 56(1): 30-39, doi: 10.1007/s13197-018-3434-1.
  • Kaya, Z. (2018). Development of different koruk (unripe grape) products by using several processing techniques. Doctoral Thesis, İzmir Institute of Technology, İzmir, Türkiye, 290 p.
  • Kaya, Z., Unluturk, S., Martin-Belloso, O., Soliva-Fortuny, R. (2020). Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science and Emerging Technologies 66: 102517, doi: 10.1016/j.ifset.2020.102517.
  • Keener, L., Krishnamurthy, K. (2014). Shedding Light on Food Safety: Applications of Pulsed Light Processing. www.foodsafetymagazine.com/magazine-archive1/junejuly-2014/shedding-light-on-food-safety-applications-of-pulsed-light processing/?sf27523462=1 (Accessed 06 December 2020).
  • Keklik, N.M, Elik, A., Salgin, U., Demirci, A., Koçer, G. (2020). Surface decontamination of white cheese by pulsed UV light treatment. Journal of Food Safety and Food Quality 71(4): 86-92, doi: 10.2376/0003-925x-71-86.
  • Kramer, B., Wunderlich, J., Muranyi, P. (2019). Inactivation of Listeria innocua on packaged meat products by pulsed light. Food Packaging and Shelf Life 21: 100353, doi: 10.1016/j.fpsl.2019.100353.
  • Koutchma, T. (2018). Pulsed light for food and beverages preservation, quality and functionality. In: Reference Module in Food Science, Knoerzer, K. (chief ed.), Elsevier, Canada, pp. 1-8, doi: 10.1016/B978-0-08-100596-5.22454-2.
  • Koutchma, T. (2019). Ultraviolet light in food technology: principles and applications. CRC Press, New York, the U.S., 278 p. ISBN: 978-1-138-08142-0.
  • Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M.T., Sackey, A.S., Wu, M., Xiao, L. (2018). Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. LWT – Food Science and Technology 92: 61-66, doi: 10.1016/j.lwt.2018.02.016.
  • Lee, H.S., Coates, G.A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT - Food Science and Technology 36(1): 153-156, doi: 10.1016/S0023-6438(02)00087-7.
  • Lee, S.H., Park, H.H., Min, S.C. (2020). Pulsed light plasma treatment for the inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in red pepper flakes. Food Control 118: 107401, doi: 10.1016/j.foodcont.2020.107401.
  • Linhares, M.F.D., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V.,Wurlitzer, N.J, Brito, E.S., Fernandes, F.A.N., Rodrigyes, S. (2020). Thermal and non-thermal processing effect on açai juice composition. Food Research International 136: 109506, doi: 10.1016/j.foodres.2020.109506.
  • MacGregor, S.J., Rowan, N.J., Mcllvaney, L., Anderson, J.G., Fouracre, R.A., Farish, O. (1998). Light inactivation of food-related pathogenic bacteria using a pulsed power source. Letters in Applied Microbiology 27(2): 67–70, doi: 10.1046/j.1472-765x.1998.00399.x.
  • Malik, S. (2018). Characterization of novel pulsed UV-light systems for inactivation of Listeria monocytogenes in apple juice and on apple surface. Master Thesis, Illinois Institue of Technology, Chicago, Illinois, 50 p.
  • Manso, M.C., Oliveira, F.A.R, Oliveira, J.C., Frías, J.M. (2001). Modelling ascorbic acid thermal degradation and browning in orange juice under aerobic conditions. International Journal of Food Science Technology 36(3): 303-312, doi: 10.1046/j.1365-2621.2001.t01-1-00460.x.
  • Marriott, N.G, Schilling, M.W, Gravani, R.B. (2018). Principles of food sanitation. Sixth Edition, Springer International Publishing AG, Cham, Switzerland, 436 p. ISBN: 978-3-319-67164-2.
  • Mukhopadhyay, S., Sokorai, K., Ukuku, D.O., Fan, X., Olanya, M., Juneja. V. (2019). Effects of pulsed light and sanitizer wash combination on inactivation of Escherichia coli O157:H7, microbial loads and apparent quality of spinach leaves. Food Microbiology 82: 127-134, doi: 10.1016/j.fm.2019.01.022.
  • Orcajo, J., Lavilla, M., Martínez-de-Marañón, I. (2019). Effect of Pulsed Light treatment on β-lactoglobulin immunoreactivity. LWT - Food Science and Technology 112: 108231, doi: 10.1016/j.lwt.2019.05.129.
  • Ozer, N.P, Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science Technology 41(4): 354-360, doi: 10.1111/j.1365-2621.2005.01071.x.
  • Paixão, L.M.N., Fonteles, T.V., Oliveira, V.S., Fernandes, F.A.N., Rodrigues, S. (2019). Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology 12(2): 110–121, doi: 10.1007/s11947-018-2197-z.
  • Palgan, I, Caminiti, I.M., Muñoz, A., Noci F., Whyte, P., Morgan, D.J., Cronin, D.A., Lyng, J.G. (2011). Effectiveness of high intensity light pulses (hilp) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiology 28(1): 14-20, doi: 10.1016/j.fm.2010.07.023.
  • Pataro, G., Muñoz, A., Palgan, I., Noci, F., Ferrari, G., Lyng, J.G. (2011). Bacterial inactivation in fruit juices using a continuous flow Pulsed Light (PL) system. Food Research International, 44(6): 1642-1648, doi: 10.1016/j.foodres.2011.04.048.
  • Pellicer, J.A., Navarro, P., Gómez-López, V.M. (2019). Pulsed light inactivation of polygalacturonase. Food Chemistry, 271: 109-113, doi: 10.1016/j.foodchem.2018.07.194.
  • Pellicer, J.A., Navarro, P., Gómez-López, V.M. (2020). Pectin methylesterase inactivation by pulsed light. Innovative Food Science & Emerging Technologies 62: 102366, doi: 10.1016/j.ifset.2020.102366.
  • Pierscianowski, J., Popović, V., Biancaniello, M., Bissonnette, S., Zhu, Y., Koutchma, T. (2021). Continuous-flow UV-C processing of kale juice for the inactivation of E. coli and assessment of quality parameters. Food Research International 140: 110085, doi: 10.1016/j.foodres.2020.110085.
  • Pohl, P., Dzimitrowicz, A., Cyganowski, P., Jamroz, P. (2022). Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chemistry 375: 131831, doi: 10.1016/j.foodchem.2021.131831.
  • Porto, E., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V., do Nascimento, R.B.R., Fernandes, F.A.N., de Brito, E.S., Rodrigues, S. (2020). Ozone and plasma processing effect on green coconut water. Food Research International 131: 109000, doi: 10.1016/j.foodres.2020.109000.
  • Preetha, P. Venugobal, A.P., Varadharaju, N., Kennedy, Z.J. (2017). Inactivation of Escherichia coli in tender coconut (Cocos Nucifera L.) water by pulsed light treatment. International Journal of Current Microbiology and Applied Sciences 6(7): 1453-1461, doi: 10.20546/ijcmas.2017.607.174.
  • Preetha, P., Pandiselvam, R., Varadharaju, N., Kennedy, Z.J, Balakrishnan, M., Kothakota, A. (2021). Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control 121: 107547, doi: 10.1016/j.foodcont.2020.107547.
  • Rao, N. (2018). Study of the demand supply gap in the production of agricultural products and agro processing industry and foresee the emerging technology from investment point of view. International Journal of Research and Analytical Reviews, 5(3): 1475-1484.
  • Ricciardi, F.E., Plazzotta, S., Conte, A., Manzocco, L. (2021). Effect of pulsed light on microbial inactivation, sensory properties and protein structure of fresh ricotta cheese. LWT - Food Science and Technology 139: 110556, doi: 10.1016/j.lwt.2020.110556.
  • Rodríguez-Bencomo, J.J., Sanchis, V., Viñas, I., Martín-Belloso, O., Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry 315: 126283, doi: 10.1016/j.foodchem.2020.126283.
  • Rodríguez, Ó., Gomes, W.F., Rodrigues, S., Fernandes, F.A.N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT - Food Science and Technology 84: 457–463, doi: 10.1016/j.lwt.2017.06.010.
  • dos Santos Aguilar, J.G. (2019). Pulsed light treatment in food. Chemical Reports 1(2): 108-111, doi: 10.25082/CR.2019.02.007.
  • Sharrer, M.J., Summerfelt, S.T., Bullock, G.L., Gleason, L.E., Taeuber, J. (2005). Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Engineering 33(2): 135-149, doi: 10.1016/j.aquaeng.2004.12.001.
  • Silva, E.K., Meireles, M.A.A., Saldaña, M.D.A. (2020). Supercritical carbon dioxide technology: A promising technique for the nonthermal processing of freshly fruit and vegetable juices. Trends in Food Science and Technology, 97: 381-390, doi: 10.1016/j.tifs.2020.01.025.
  • Syamaladevi, R.M., Lupien, S.L., Bhunia, K., Sablani, S.S., Dugan, F., Rasco, B., Killinger, K., Dhingra, A., Ross, C. (2014). UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage. Postharvest Biology and Technology 87: 27-32, doi: 10.1016/j.postharvbio.2013.08.005.
  • Tao, T., Ding, C., Han, N., Cui, Y., Liu, X., Zhang, C. (2019). Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: Effects on quality attributes during storage. Food Packaging and Shelf Life 21: 100358, doi: 10.1016/j.fpsl.2019.100358.
  • Taştan, Ö. (2019). Berrak elma suyunun ısıl olmayan pastörizasyonuna yönelik yüksek yoğunluklu vurgulu ışık, düşük voltajlı elektriksel işlem ve doğal antimikrobiyal maddelerin kombine kullanımının incelenmesi. Ege Üniversitesi Gıda Mühendisliği Anabilim Dalı Doktora Tezi, İzmir, Türkiye, 182 s.
  • Tomasevic, I., Rajkovic, A. (2005). The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses: A systematic review. Procedia Food Science 5: 285-288, doi: 10.1016/j.profoo.2015.09.081.
  • Vargas-Ramella, M., Pateiro, M., Gavahian, M., Franco, D., Zhang, W., Khaneghah, A.M., Guerrero- Sánchez, Y., Lorenzo, J.M. (2021). Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends in Food Science and Technology, 115: 1-11, doi: 10.1016/j.tifs.2021.06.037.
  • Vićić, M., Sobotka, L.G., Wiliamson, J.F., Charity, R.J., Elson, J.M. (2003). Fast pulsed UV light source and calibration of non-linear photomultiplier response. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 507(3): 636-642, doi: 10.1016/S0168-9002(03)01376-7.
  • Vollmer, K., Chakraborty, S., Bhalerao, P.P., Carle, R., Frank, J., Steingass, C.B. (2020). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology 13: 1095-1109, doi: 10.1007/s11947-020-02460-7.
  • Wang, Y., Li, L., Wang, B., Xu, J. (2022). Selective enzyme inactivation in a simulated system and in cabbage juice using electrospray technology. Innovative Food Science & Emerging Technologies, 75: 102875, doi: 10.1016/j.ifset.2021.102875.
  • Wang, B., Zhang, Y., Venkitasamy, C., Wu, B., Zhongli, P., Ma, H. (2017). Effect of pulsed light on activity and structural changes of horseradish peroxidase. Food Chemistry 234: 20-25, doi: 10.1016/j.foodchem.2017.04.149.
  • Wu, J., Ouyang, Q., Park, B., Kang, R., Wang, Z., Wang, L., Chen, Q. (2022). Physicochemical indicators coupled with multivariate analysis for comprehensive evaluation of matcha sensory quality. Food Chemistry 371(1): 131100, doi: 10.1016/j.foodchem.2021.131100.
  • Xu, F., Wang, B., Hong, C., Telebielaigen, S., Nsor-Atindana, J., Duan, Y., Zhong, F. (2019). Optimization of spiral continuous flow-through pulse light sterilization for Escherichia coli in red grape juice by response surface methodology. Food Control 105: 8-12, doi: 10.106/j.foodcont.2019.04.023.
  • Zhang, H.Q, Barbosa-Cánovas, G.V., Balasubramaniam, V.M, Dunne, C.P., Farkas, D. F., Yuan, J.T.C. (eds.) (2011). Nonthermal Processing Technologies for Food. Blackwell Publishing Ltd. and Institue of Food Technologists, the U.S., 596 p. ISBN: 978-0-8138-1668-5.
  • Zhu, N., Wang, K., Zhang, S., Zhao, B., Yang, J., Wang, S. (2021). Application of artificial neural networks to predict multiple quality of dry-cured ham based on protein degradation. Food Chemistry 344: 128586, doi: 10.1016/j.foodchem.2020.128586.
  • Zhu, Y., Li, C., Cui, H., Lin, L. (2019). Antimicrobial mechanism of pulsed light for the control of E.coli O157:57 and its application in carrot juice. Food Control 106(33): 106751, doi: 10.1016/j.foodcont.106751.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Pınar Ankaralıgil 0000-0001-6377-5303

Bengi Hakgüder Taze 0000-0002-1560-6975

Yayımlanma Tarihi 30 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 47 Sayı: 4

Kaynak Göster

APA Ankaralıgil, P., & Hakgüder Taze, B. (2022). VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ. Gıda, 47(4), 663-678. https://doi.org/10.15237/gida.GD22029
AMA Ankaralıgil P, Hakgüder Taze B. VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ. GIDA. Ağustos 2022;47(4):663-678. doi:10.15237/gida.GD22029
Chicago Ankaralıgil, Pınar, ve Bengi Hakgüder Taze. “VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ”. Gıda 47, sy. 4 (Ağustos 2022): 663-78. https://doi.org/10.15237/gida.GD22029.
EndNote Ankaralıgil P, Hakgüder Taze B (01 Ağustos 2022) VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ. Gıda 47 4 663–678.
IEEE P. Ankaralıgil ve B. Hakgüder Taze, “VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ”, GIDA, c. 47, sy. 4, ss. 663–678, 2022, doi: 10.15237/gida.GD22029.
ISNAD Ankaralıgil, Pınar - Hakgüder Taze, Bengi. “VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ”. Gıda 47/4 (Ağustos 2022), 663-678. https://doi.org/10.15237/gida.GD22029.
JAMA Ankaralıgil P, Hakgüder Taze B. VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ. GIDA. 2022;47:663–678.
MLA Ankaralıgil, Pınar ve Bengi Hakgüder Taze. “VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ”. Gıda, c. 47, sy. 4, 2022, ss. 663-78, doi:10.15237/gida.GD22029.
Vancouver Ankaralıgil P, Hakgüder Taze B. VURGULU IŞIK İLE İŞLENEN MEYVE VE SEBZE SULARININ KALİTESİ. GIDA. 2022;47(4):663-78.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/