Araştırma Makalesi
BibTex RIS Kaynak Göster

KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI

Yıl 2022, Cilt: 47 Sayı: 6, 1046 - 1058, 15.12.2022
https://doi.org/10.15237/gida.GD22072

Öz

Bu çalışmada, kırmızı turp (Raphanus sativus L.) kabuk ve içlerinden elde edilen polifenolik ekstraktların in vitro sindirim sırasında toplam fenolik madde miktarı (TFMM) ve antioksidan aktivitesindeki (AOA) değişim araştırılmıştır. Öncelikle, utrases su banyosu destekli ekstraksiyon (USDE) ve ultrases prob destekli ekstraksiyon (UPDE), farklı ultrasonikasyon süreleri (20, 60, 180, 540 saniye) ile uygulanarak en yüksek TFMM ve AOA sağlayan ekstraksiyon yöntemi belirlenmiştir. Örneklerin TFMM içeriği Folin-Ciocalteu metodu ile AOA’si ise DPPH ve CUPRAC metotları ile belirlenmiştir. Sonuçlara göre, en yüksek TFMM ve AOACUPRAC değerleri, turp içleri için sırasıyla 41.17±0.70 mg GAE/g kuru madde (KM) ve 12.67±0.00 mg TE/g KM, turp kabukları için sırasıyla 243.26±5.44 mg GAE/g KM ve 89.65±0.48 mg TE/g KM olarak 60 saniye ultrasonikasyon süresinde USDE ile elde edilmiştir. Turp iç ve kabuklarından ekstraktların in vitro sindirimden sonra biyoerişilebilirliği (%) sırasıyla, TFMM için %54.21±1.94 ve %32.20±2.61, AOACUPRAC için %66.46±0.40 ve %27.89±0.99 ve AOADPPH için %302.03±28.52 ve %80.43±1.03 olarak gerçekleşmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012102006

Teşekkür

Bu çalışma, TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Desteği Programı “Kırmızı turp (Raphanus sativus L.) içlerinden polifenolik bileşenlerin ekstraksiyonu: In vitro mide-bağırsak sindirim sırasında ekstraktların toplam fenolik madde içeriği ile antioksidan aktivitesindeki değişimin araştırılması başlıklı” (Başvuru (proje) no: 1919B012102006) proje kapsamında desteklenmiştir.

Kaynakça

  • Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639.
  • Albero, B., Tadeo, J. L., and Pérez, R. A. (2019). Ultrasound-assisted extraction of organic contaminants. TrAC Trends in Analytical Chemistry, 118, 739-750.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Azam, A., Khan, I., Mahmood, A., & Hameed, A. (2013). Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. Journal of the Science of Food and Agriculture, 93(13), 3237-3244.
  • Banihani, S. A. (2017). Radish (Raphanus sativus) and diabetes. Nutrients, 9(9), 1014.
  • Barillari, J., Cervellati, R., Costa, S., Guerra, M. C., Speroni, E., Utan, A., & Iori, R. (2006). Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract. Journal of Agricultural and Food Chemistry, 54(26), 9773-9778.
  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9-19.
  • Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466-1472.
  • Capelo, J. L., Maduro, C., & Vilhena, C. (2005). Discussion of parameters associated with the ultrasonic solid–liquid extraction for elemental analysis (total content) by electrothermal atomic absorption spectrometry. An overview. Ultrasonics sonochemistry, 12(3), 225-232.
  • Chen, G. L., Chen, S. G., Xie, Y. Q., Chen, F., Zhao, Y. Y., Luo, C. X., & Gao, Y. Q. (2015). Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. Journal of Functional Foods, 17, 243-259.
  • Fawole, O. A., & Opara, U. L. (2016). Stability of total phenolic concentration and antioxidant capacity of extracts from pomegranate co-products subjected to in vitro digestion. BMC Complementary and Alternative Medicine, 16(1), 1-10.
  • Gawlik-Dziki, U., Jeżyna, M., Świeca, M., Dziki, D., Baraniak, B., & Czyż, J. (2012). Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. Food Research International, 49(1), 469-476.
  • Gras, C. C., Nemetz, N., Carle, R., & Schweiggert, R. M. (2017). Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chemistry, 235, 265-274.
  • Hanlon, P. R., Robbins, M. G., Hammon, L. D., & Barnes, D. M. (2009). Aqueous extract from the vegetative portion of Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzyme expression in HepG2 cells. Journal of Functional Foods, 1(4), 356-365.
  • He, J., and Giusti, M. M. (2011). High-purity isolation of anthocyanins mixtures from fruits and vegetables–A novel solid-phase extraction method using mixed mode cation-exchange chromatography. Journal of Chromatography A, 1218(44), 7914-7922.
  • Jara-Palacios, M. J., Gonçalves, S., Hernanz, D., Heredia, F. J., & Romano, A. (2018). Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International, 109, 433-439.
  • Jiang, W., and Zhou, X. (2019). Hydrolysis of radish anthocyanins to enhance the antioxidant and antiproliferative capacities. Food Chemistry, 294, 477-485.
  • Khalid, M., Ayayda, R., Gheith, N., Salah, Z., Abu-Lafi, S., Jaber, A., . . . Al-Mazaideh, G. (2020). Assessment of antimicrobial and anticancer activity of radish sprouts extracts. Jordan Journal of Biological Sciences, 13(4).
  • Kim, J. K., Baskar, T. B., & Park, S. U. (2016). Total phenolic and flavonoid contents and antioxidant activities of two Raphanus sativus L. cultivars (cherry belle and valentine). Biosciences Biotechnology Research Asia, 13(1), 31-36.
  • Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics sonochemistry, 21(2), 606-611.
  • Kumaran, A., & Karunakaran, R. J. (2006). Anti-oxidant activity of polyphenols from Phyllanthus debilis Klein ex Willd. Journal of Natural remedies, 6(2), 141-146.
  • Ma, Y., Yang, Y., Gao, J., Feng, J., Shang, Y., & Wei, Z. (2020). Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food and Chemical Toxicology, 135, 110941.
  • Martínez-Las Heras, R., Pinazo, A., Heredia, A., & Andrés, A. (2017). Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478-485.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., ... & Dufour, C. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124.
  • Ojha, K. S., Aznar, R., O'Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663.
  • Pająk, P., Socha, R., Gałkowska, D., Rożnowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300-306.
  • Pavan, V., Sancho, R. A. S., & Pastore, G. M. (2014). The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT-Food Science and Technology, 59(2), 1247-1251.
  • Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agricultural and Food Chemistry, 50(8), 2308-2312.
  • Roleira, F. M., Tavares-da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235-258.
  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949-1956.
  • Şengül, M., Yildiz, H., & Kavaz, A. (2014). The effect of cooking on total polyphenolic content and antioxidant activity of selected vegetables. International Journal of Food Properties, 17(3), 481-490.
  • Tiwari, B. K. 2015. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.
  • Toor, R. K., & Savage, G. P. (2006). Changes in major antioxidant components of tomatoes during post-harvest storage. Food Chemistry, 99(4), 724-727.
  • Xie P, You F, Huang L, Zhang C (2017) Comprehensive assessment of phenolic compounds and antioxidant performance in the developmental process of jujube (Ziziphus jujuba Mill.). J Funct Foods, 36, 233-242. https://doi.org/10.1016/j.jff.2017.07.012
  • Yücetepe, A., Altin, G., & Özçelik, B. (2021). A novel antioxidant source: evaluation of in vitro bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (Raphanus sativus L. var. niger) during simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(3), 1376-1384.

ULTRASOUND BATH- AND ULTRASOUND PROBE-ASSISTED EXTRACTIONS OF POLYPHENOLICS FROM PULP AND PEEL OF RED RADISH (Raphanus sativus L.): INVESTIGATION OF CHANGES IN ANTIOXIDANT ACTIVITY DURING IN VITRO DIGESTION

Yıl 2022, Cilt: 47 Sayı: 6, 1046 - 1058, 15.12.2022
https://doi.org/10.15237/gida.GD22072

Öz

In this study, changes in total phenolic content (TPC) and antioxidant activity (AOA) of polyphenolics from pulp and peel of red radish (Raphanus sativus L.) were investigated during in vitro digestion. Firstly, ultrasound bath-assisted extraction (UBAE) and ultrasound probe-assisted extraction (UPAE) were applied with different ultrasonication time (20, 60, 180, 540 seconds) to determine the extraction method providing the highest TPC and AOA. The TPC and AOA (two methods) were determined by the Folin-Ciocalteu, DPPH and CUPRAC methods, respectively. According to the results, the highest TPC and AOACUPRAC were 41.17±0.70 mg GAE/g dry weight (DW) and 12.67±0.00 mg TE/g DW for pulp and 243.26±5.44 mg GAE/g DW and 89.65±0.48 mg TE/g DW for peel extracts in UBAE, respectively. The bioaccessibilities (%) of extracts from pulp and peel after in vitro digestion process were %54.21±1.94 and %32.20±2.61 for TPC, %66.46±0.40 and %27.89±0.99 for AOACUPRAC and %302.03±28.52 and %80.43±1.03 for AOADPPH, respectively.

Proje Numarası

1919B012102006

Kaynakça

  • Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639.
  • Albero, B., Tadeo, J. L., and Pérez, R. A. (2019). Ultrasound-assisted extraction of organic contaminants. TrAC Trends in Analytical Chemistry, 118, 739-750.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Azam, A., Khan, I., Mahmood, A., & Hameed, A. (2013). Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. Journal of the Science of Food and Agriculture, 93(13), 3237-3244.
  • Banihani, S. A. (2017). Radish (Raphanus sativus) and diabetes. Nutrients, 9(9), 1014.
  • Barillari, J., Cervellati, R., Costa, S., Guerra, M. C., Speroni, E., Utan, A., & Iori, R. (2006). Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract. Journal of Agricultural and Food Chemistry, 54(26), 9773-9778.
  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9-19.
  • Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466-1472.
  • Capelo, J. L., Maduro, C., & Vilhena, C. (2005). Discussion of parameters associated with the ultrasonic solid–liquid extraction for elemental analysis (total content) by electrothermal atomic absorption spectrometry. An overview. Ultrasonics sonochemistry, 12(3), 225-232.
  • Chen, G. L., Chen, S. G., Xie, Y. Q., Chen, F., Zhao, Y. Y., Luo, C. X., & Gao, Y. Q. (2015). Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. Journal of Functional Foods, 17, 243-259.
  • Fawole, O. A., & Opara, U. L. (2016). Stability of total phenolic concentration and antioxidant capacity of extracts from pomegranate co-products subjected to in vitro digestion. BMC Complementary and Alternative Medicine, 16(1), 1-10.
  • Gawlik-Dziki, U., Jeżyna, M., Świeca, M., Dziki, D., Baraniak, B., & Czyż, J. (2012). Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. Food Research International, 49(1), 469-476.
  • Gras, C. C., Nemetz, N., Carle, R., & Schweiggert, R. M. (2017). Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chemistry, 235, 265-274.
  • Hanlon, P. R., Robbins, M. G., Hammon, L. D., & Barnes, D. M. (2009). Aqueous extract from the vegetative portion of Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzyme expression in HepG2 cells. Journal of Functional Foods, 1(4), 356-365.
  • He, J., and Giusti, M. M. (2011). High-purity isolation of anthocyanins mixtures from fruits and vegetables–A novel solid-phase extraction method using mixed mode cation-exchange chromatography. Journal of Chromatography A, 1218(44), 7914-7922.
  • Jara-Palacios, M. J., Gonçalves, S., Hernanz, D., Heredia, F. J., & Romano, A. (2018). Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International, 109, 433-439.
  • Jiang, W., and Zhou, X. (2019). Hydrolysis of radish anthocyanins to enhance the antioxidant and antiproliferative capacities. Food Chemistry, 294, 477-485.
  • Khalid, M., Ayayda, R., Gheith, N., Salah, Z., Abu-Lafi, S., Jaber, A., . . . Al-Mazaideh, G. (2020). Assessment of antimicrobial and anticancer activity of radish sprouts extracts. Jordan Journal of Biological Sciences, 13(4).
  • Kim, J. K., Baskar, T. B., & Park, S. U. (2016). Total phenolic and flavonoid contents and antioxidant activities of two Raphanus sativus L. cultivars (cherry belle and valentine). Biosciences Biotechnology Research Asia, 13(1), 31-36.
  • Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics sonochemistry, 21(2), 606-611.
  • Kumaran, A., & Karunakaran, R. J. (2006). Anti-oxidant activity of polyphenols from Phyllanthus debilis Klein ex Willd. Journal of Natural remedies, 6(2), 141-146.
  • Ma, Y., Yang, Y., Gao, J., Feng, J., Shang, Y., & Wei, Z. (2020). Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food and Chemical Toxicology, 135, 110941.
  • Martínez-Las Heras, R., Pinazo, A., Heredia, A., & Andrés, A. (2017). Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478-485.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., ... & Dufour, C. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124.
  • Ojha, K. S., Aznar, R., O'Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663.
  • Pająk, P., Socha, R., Gałkowska, D., Rożnowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300-306.
  • Pavan, V., Sancho, R. A. S., & Pastore, G. M. (2014). The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT-Food Science and Technology, 59(2), 1247-1251.
  • Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agricultural and Food Chemistry, 50(8), 2308-2312.
  • Roleira, F. M., Tavares-da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235-258.
  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949-1956.
  • Şengül, M., Yildiz, H., & Kavaz, A. (2014). The effect of cooking on total polyphenolic content and antioxidant activity of selected vegetables. International Journal of Food Properties, 17(3), 481-490.
  • Tiwari, B. K. 2015. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.
  • Toor, R. K., & Savage, G. P. (2006). Changes in major antioxidant components of tomatoes during post-harvest storage. Food Chemistry, 99(4), 724-727.
  • Xie P, You F, Huang L, Zhang C (2017) Comprehensive assessment of phenolic compounds and antioxidant performance in the developmental process of jujube (Ziziphus jujuba Mill.). J Funct Foods, 36, 233-242. https://doi.org/10.1016/j.jff.2017.07.012
  • Yücetepe, A., Altin, G., & Özçelik, B. (2021). A novel antioxidant source: evaluation of in vitro bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (Raphanus sativus L. var. niger) during simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(3), 1376-1384.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Özlem Gökdemir 0000-0002-8142-4862

Aysun Yücetepe 0000-0002-3800-4774

Proje Numarası 1919B012102006
Erken Görünüm Tarihi 19 Ekim 2022
Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 47 Sayı: 6

Kaynak Göster

APA Gökdemir, Ö., & Yücetepe, A. (2022). KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI. Gıda, 47(6), 1046-1058. https://doi.org/10.15237/gida.GD22072
AMA Gökdemir Ö, Yücetepe A. KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI. GIDA. Aralık 2022;47(6):1046-1058. doi:10.15237/gida.GD22072
Chicago Gökdemir, Özlem, ve Aysun Yücetepe. “KIRMIZI TURP (Raphanus Sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI”. Gıda 47, sy. 6 (Aralık 2022): 1046-58. https://doi.org/10.15237/gida.GD22072.
EndNote Gökdemir Ö, Yücetepe A (01 Aralık 2022) KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI. Gıda 47 6 1046–1058.
IEEE Ö. Gökdemir ve A. Yücetepe, “KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI”, GIDA, c. 47, sy. 6, ss. 1046–1058, 2022, doi: 10.15237/gida.GD22072.
ISNAD Gökdemir, Özlem - Yücetepe, Aysun. “KIRMIZI TURP (Raphanus Sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI”. Gıda 47/6 (Aralık 2022), 1046-1058. https://doi.org/10.15237/gida.GD22072.
JAMA Gökdemir Ö, Yücetepe A. KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI. GIDA. 2022;47:1046–1058.
MLA Gökdemir, Özlem ve Aysun Yücetepe. “KIRMIZI TURP (Raphanus Sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI”. Gıda, c. 47, sy. 6, 2022, ss. 1046-58, doi:10.15237/gida.GD22072.
Vancouver Gökdemir Ö, Yücetepe A. KIRMIZI TURP (Raphanus sativus L.) İÇ VE KABUKLARINDAN POLİFENOLİKLERİN ULTRASES SU BANYOSU VE ULTRASES PROB DESTEKLİ EKSTRAKSİYONU: IN VITRO SİNDİRİM SIRASINDA ANTİOKSİDAN AKTİVİTEDEKİ DEĞİŞİMİN ARAŞTIRILMASI. GIDA. 2022;47(6):1046-58.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/