Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

DEVELOPMENT OF CURCUMIN BASED BIOPOLYMER FILMS UNDER VISIBLE LIGHT IRRADIATION

Yıl 2022, Cilt 47, Sayı 6, 1104 - 1117, 15.12.2022
https://doi.org/10.15237/gida.GD22079

Öz

The aim of the study was to develop a colorimetric film with photooxidation reaction under visible light using curcumin and furan modified gelatin. For this purpose, bovine gelatin was modified with furfuryl isocyanate to synthesize photosensitive furan modified gelatin (f-gelatin). In the study, curcumin was expected to serve both as the visible light absorbing photosensitizer and the recognition agent for total volatile basic amines. Mechanical, barrier, thermal and micro structure characterization experiments were carried out with five different films prepared by changing f-gelatin, gelatin and curcumin ratios. Films (K20-FG) prepared with f-gelatin and 20% (v/v) curcumin was shown to give the best results as a result of characterization tests. Later, color difference values of K20-FG films against different concentrations of volatile ammonia were monitored. Gas sensing tests were shown that monitoring of protein rich food spoilage, could be possible with the developed K20-FG films.

Kaynakça

  • ASTM. (2005). Standard test method for water vapor transmission of materials (E 96- 05). Philadelphia, PA, USA.
  • ASTM. (2009). Standard test method for tensile properties of thin plastic sheeting (D 882-09). Philadelphia, PA, USA.
  • Bertoldo, M., Bronco, S., Gragnoli, T., & Ciardelli, F. (2007). Modification of gelatin by reaction with 1,6-diisocyanatohexane. Macromolecular Bioscience, 7(3). https://doi.org/10.1002/mabi.200600215
  • Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: a review. In Journal of Food Science and Technology (Vol. 52, Issue 10). https://doi.org/10.1007/s13197-015-1766-7
  • Buzby, J. C., Wells, H. F., & Hyman, J. (2014). The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States, EIB-121, U.S. Department of Agriculture, Economic Research Service. SSRN Electronic Journal, 121.
  • Calloway, D. (1997). Beer-Lambert Law. Journal of Chemical Education, 74(7). https://doi.org/10.1021/ed074p744.3
  • Ezati, P., & Rhim, J. W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230. https://doi.org/10.1016/j.carbpol.2019.115638
  • Farris, S., Song, J., & Huang, Q. (2010). Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry, 58(2). https://doi.org/10.1021/jf9031603
  • García-Astrain, C., Gandini, A., Peña, C., Algar, I., Eceiza, A., Corcuera, M., & Gabilondo, N. (2014). Diels-Alder “click” chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels. RSC Advances, 4(67). https://doi.org/10.1039/c4ra06122e
  • García-Astrain, C., Peña-Rodriguez, C., Retegi, A., Eceiza, A., Corcuera, M. A., & Gabilondo, N. (2015). Green chemistry for the cross-linking of photo-sensitive furan modified gelatin. Materials Letters, 160. https://doi.org/10.1016/j.matlet.2015.07.096
  • Girotto, F., Alibardi, L., & Cossu, R. (2015). Food waste generation and industrial uses: A review. Waste Management, 45. https://doi.org/10.1016/j.wasman.2015.06.008
  • Gökdemir, B., Baylan, N., & Çehreli, S. (2020). Application of a Novel Ionic Liquid as an Alternative Green Solvent for the Extraction of Curcumin from Turmeric with Response Surface Methodology: Determination and Optimization Study. Analytical Letters, 53(13). https://doi.org/10.1080/00032719.2020.1730394
  • Gontard, N., Duchez, C., Cuq, J., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1). https://doi.org/10.1111/j.1365-2621.1994.tb02045.x
  • Guaresti, O., García–Astrain, C., Palomares, T., Alonso–Varona, A., Eceiza, A., & Gabilondo, N. (2017). Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via ‘click’ chemistry for controlled drug release. International Journal of Biological Macromolecules, 102. https://doi.org/10.1016/j.ijbiomac.2017.04.003
  • Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., Praet, N., Bellinger, D. C., De Silva, N. R., Gargouri, N., Speybroeck, N., Cawthorne, A., Mathers, C., Stein, C., Angulo, F. J., & Devleesschauwer, B. (2015). Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med, 12(12).
  • Hussain, K., Aslam, Z., Ullah, S., & Shah, M. R. (2021). Synthesis of pH responsive, photocrosslinked gelatin-based hydrogel system for control release of ceftriaxone. Chemistry and Physics of Lipids, 238. https://doi.org/10.1016/j.chemphyslip.2021.105101
  • Jasim, F., & Ali, F. (1989). Measurements of some spectrophotometric parameters of curcumin in 12 polar and nonpolar organic solvents. Microchemical Journal, 39(2). https://doi.org/10.1016/0026-265X(89)90024-6
  • Kim, S. W., Kim, J. W., Noh, S. H., Kim, E. H., Ito, Y., Nah, J. W., & Son, T. Il. (2018). Application of visible light curable furfuryl-low molecular chitosan derivative as an anti-adhesion agent. Journal of Industrial and Engineering Chemistry, 66. https://doi.org/10.1016/j.jiec.2018.06.011
  • Kuswandi, B., Jayus, Oktaviana, R., Abdullah, A., & Heng, L. Y. (2014). A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packaging Technology and Science, 27(1). https://doi.org/10.1002/pts.2016
  • Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., & Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83. https://doi.org/10.1016/j.foodhyd.2018.05.012
  • Ma, Z., Chen, P., Cheng, W., Yan, K., Pan, L., Shi, Y., & Yu, G. (2018). Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Letters, 18(7). https://doi.org/10.1021/acs.nanolett.8b01825
  • Mazaki, T., Shiozaki, Y., Yamane, K., Yoshida, A., Nakamura, M., Yoshida, Y., Zhou, D., Kitajima, T., Tanaka, M., Ito, Y., Ozaki, T., & Matsukawa, A. (2014). A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Scientific Reports, 4. https://doi.org/10.1038/srep04457
  • Mchugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4). https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  • Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222. https://doi.org/10.1016/j.carbpol.2019.115030
  • Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2016). Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloids, 61. https://doi.org/10.1016/j.foodhyd.2016.06.013
  • Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids, 89. https://doi.org/10.1016/j.foodhyd.2018.11.036
  • Nimmo, C. M., Owen, S. C., & Shoichet, M. S. (2011). Diels-alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules, 12(3). https://doi.org/10.1021/bm101446k
  • Öz, V., Karadayi, Ş., Çakan, H., Karadayi, B., & Kaya, A. (2014). Food poisoning in emergency units. Marmara Medical Journal, 27(2). https://doi.org/10.5472/MMJ.2014.03316.1
  • Park, J., Nam, J., Yun, H., Jin, H. J., & Kwak, H. W. (2021). Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydrate Polymers, 254. https://doi.org/10.1016/j.carbpol.2020.117317
  • Park, S. H., Seo, S. Y., Lee, H. J., Na, H. N., Lee, J. W., Woo, H. D., & Son, T. Il. (2012). Preparation of furfuryl-fish gelatin (F-f.gel) cured using visible-light and its application as an anti-adhesion agent. Macromolecular Research, 20(8). https://doi.org/10.1007/s13233-012-0128-9
  • Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101(17). https://doi.org/10.1016/j.biortech.2010.03.112
  • Roy, S., & Rhim, J. W. (2020). Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids and Surfaces B: Biointerfaces, 188. https://doi.org/10.1016/j.colsurfb.2019.110761
  • Seidi Damyeh, M., Mereddy, R., Netzel, M. E., & Sultanbawa, Y. (2020). An insight into curcumin-based photosensitization as a promising and green food preservation technology. Comprehensive Reviews in Food Science and Food Safety, 19(4). https://doi.org/10.1111/1541-4337.12583
  • Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: The story so far. European Journal of Cancer, 41(13). https://doi.org/10.1016/j.ejca.2005.05.009
  • Son, T. Il, Sakuragi, M., Takahashi, S., Obuse, S., Kang, J., Fujishiro, M., Matsushita, H., Gong, J., Shimizu, S., Tajima, Y., Yoshida, Y., Suzuki, K., Yamamoto, T., Nakamura, M., & Ito, Y. (2010). Visible light-induced crosslinkable gelatin. Acta Biomaterialia, 6(10). https://doi.org/10.1016/j.actbio.2010.05.018
  • TS 2409 (2014). Tavuk - Gövde Etleri (Karkas), Türk Standartları Enstitüsü, Ankara.
  • Van Hoorick, J., Ovsianikov, A., Dubruel, P., & Van Vlierberghe, S. (2018). Photo-Crosslinkable Gelatin Hydrogels, Versatile Materials for (High Resolution) Additive Manufacturing. Material Matters, 13(3).
  • Wilson, N. L. W., Rickard, B. J., Saputo, R., & Ho, S. T. (2017). Food waste: The role of date labels, package size, and product category. Food Quality and Preference, 55. https://doi.org/10.1016/j.foodqual.2016.08.004
  • Zhao, J., Lalevée, J., Lu, H., MacQueen, R., Kable, S. H., Schmidt, T. W., Stenzel, M. H., & Xiao, P. (2015). A new role of curcumin: As a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 6(28). https://doi.org/10.1039/c5py00661a

KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ

Yıl 2022, Cilt 47, Sayı 6, 1104 - 1117, 15.12.2022
https://doi.org/10.15237/gida.GD22079

Öz

Çalışmanın amacı, kurkumin ve furan modifiye jelatin kullanarak görünür ışık altında gerçekleşen fotooksidasyon reaksiyonu ile bir kolorimetrik film geliştirmektir. Bu amaçla, sığır jelatini furfuril izosiyanat ile modifiye edilerek görünür ışığa duyarlı furan modifiye jelatin (f-jelatin) sentezlenmiştir. Çalışmada kurkuminin hem görünür ışığa duyarlaştırıcı olarak hem de toplam uçucu bazik azot algılayıcısı olarak kullanılması hedeflenmiştir. F-jelatin, jelatin ve kurkumin oranları değiştirilerek hazırlanan beş farklı filmle mekanik, bariyer, ısıl ve mikro yapı karakterizasyon deneyleri gerçekleştirilmiştir. %20 (h/h) kurkumin eklenmiş f-jelatin ile hazırlanan filmlerin (K20-FG), karakterizasyon deneyleri sonucu en iyi sonucu verdiği ortaya konmuştur. Daha sonra K20-FG filmlerinin farklı amonyak gazı konsantrasyonlarındaki renk değişim miktarına karar verilmiştir. Gaz algı testleri sonucunda proteince yüksek gıdaların bozulma takibinin geliştirilen K20-FG filmleri ile mümkün olabileceği sonucuna varılmıştır.

Kaynakça

  • ASTM. (2005). Standard test method for water vapor transmission of materials (E 96- 05). Philadelphia, PA, USA.
  • ASTM. (2009). Standard test method for tensile properties of thin plastic sheeting (D 882-09). Philadelphia, PA, USA.
  • Bertoldo, M., Bronco, S., Gragnoli, T., & Ciardelli, F. (2007). Modification of gelatin by reaction with 1,6-diisocyanatohexane. Macromolecular Bioscience, 7(3). https://doi.org/10.1002/mabi.200600215
  • Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: a review. In Journal of Food Science and Technology (Vol. 52, Issue 10). https://doi.org/10.1007/s13197-015-1766-7
  • Buzby, J. C., Wells, H. F., & Hyman, J. (2014). The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States, EIB-121, U.S. Department of Agriculture, Economic Research Service. SSRN Electronic Journal, 121.
  • Calloway, D. (1997). Beer-Lambert Law. Journal of Chemical Education, 74(7). https://doi.org/10.1021/ed074p744.3
  • Ezati, P., & Rhim, J. W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230. https://doi.org/10.1016/j.carbpol.2019.115638
  • Farris, S., Song, J., & Huang, Q. (2010). Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry, 58(2). https://doi.org/10.1021/jf9031603
  • García-Astrain, C., Gandini, A., Peña, C., Algar, I., Eceiza, A., Corcuera, M., & Gabilondo, N. (2014). Diels-Alder “click” chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels. RSC Advances, 4(67). https://doi.org/10.1039/c4ra06122e
  • García-Astrain, C., Peña-Rodriguez, C., Retegi, A., Eceiza, A., Corcuera, M. A., & Gabilondo, N. (2015). Green chemistry for the cross-linking of photo-sensitive furan modified gelatin. Materials Letters, 160. https://doi.org/10.1016/j.matlet.2015.07.096
  • Girotto, F., Alibardi, L., & Cossu, R. (2015). Food waste generation and industrial uses: A review. Waste Management, 45. https://doi.org/10.1016/j.wasman.2015.06.008
  • Gökdemir, B., Baylan, N., & Çehreli, S. (2020). Application of a Novel Ionic Liquid as an Alternative Green Solvent for the Extraction of Curcumin from Turmeric with Response Surface Methodology: Determination and Optimization Study. Analytical Letters, 53(13). https://doi.org/10.1080/00032719.2020.1730394
  • Gontard, N., Duchez, C., Cuq, J., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1). https://doi.org/10.1111/j.1365-2621.1994.tb02045.x
  • Guaresti, O., García–Astrain, C., Palomares, T., Alonso–Varona, A., Eceiza, A., & Gabilondo, N. (2017). Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via ‘click’ chemistry for controlled drug release. International Journal of Biological Macromolecules, 102. https://doi.org/10.1016/j.ijbiomac.2017.04.003
  • Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., Praet, N., Bellinger, D. C., De Silva, N. R., Gargouri, N., Speybroeck, N., Cawthorne, A., Mathers, C., Stein, C., Angulo, F. J., & Devleesschauwer, B. (2015). Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med, 12(12).
  • Hussain, K., Aslam, Z., Ullah, S., & Shah, M. R. (2021). Synthesis of pH responsive, photocrosslinked gelatin-based hydrogel system for control release of ceftriaxone. Chemistry and Physics of Lipids, 238. https://doi.org/10.1016/j.chemphyslip.2021.105101
  • Jasim, F., & Ali, F. (1989). Measurements of some spectrophotometric parameters of curcumin in 12 polar and nonpolar organic solvents. Microchemical Journal, 39(2). https://doi.org/10.1016/0026-265X(89)90024-6
  • Kim, S. W., Kim, J. W., Noh, S. H., Kim, E. H., Ito, Y., Nah, J. W., & Son, T. Il. (2018). Application of visible light curable furfuryl-low molecular chitosan derivative as an anti-adhesion agent. Journal of Industrial and Engineering Chemistry, 66. https://doi.org/10.1016/j.jiec.2018.06.011
  • Kuswandi, B., Jayus, Oktaviana, R., Abdullah, A., & Heng, L. Y. (2014). A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packaging Technology and Science, 27(1). https://doi.org/10.1002/pts.2016
  • Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., & Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83. https://doi.org/10.1016/j.foodhyd.2018.05.012
  • Ma, Z., Chen, P., Cheng, W., Yan, K., Pan, L., Shi, Y., & Yu, G. (2018). Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Letters, 18(7). https://doi.org/10.1021/acs.nanolett.8b01825
  • Mazaki, T., Shiozaki, Y., Yamane, K., Yoshida, A., Nakamura, M., Yoshida, Y., Zhou, D., Kitajima, T., Tanaka, M., Ito, Y., Ozaki, T., & Matsukawa, A. (2014). A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Scientific Reports, 4. https://doi.org/10.1038/srep04457
  • Mchugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4). https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  • Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222. https://doi.org/10.1016/j.carbpol.2019.115030
  • Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2016). Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloids, 61. https://doi.org/10.1016/j.foodhyd.2016.06.013
  • Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids, 89. https://doi.org/10.1016/j.foodhyd.2018.11.036
  • Nimmo, C. M., Owen, S. C., & Shoichet, M. S. (2011). Diels-alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules, 12(3). https://doi.org/10.1021/bm101446k
  • Öz, V., Karadayi, Ş., Çakan, H., Karadayi, B., & Kaya, A. (2014). Food poisoning in emergency units. Marmara Medical Journal, 27(2). https://doi.org/10.5472/MMJ.2014.03316.1
  • Park, J., Nam, J., Yun, H., Jin, H. J., & Kwak, H. W. (2021). Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydrate Polymers, 254. https://doi.org/10.1016/j.carbpol.2020.117317
  • Park, S. H., Seo, S. Y., Lee, H. J., Na, H. N., Lee, J. W., Woo, H. D., & Son, T. Il. (2012). Preparation of furfuryl-fish gelatin (F-f.gel) cured using visible-light and its application as an anti-adhesion agent. Macromolecular Research, 20(8). https://doi.org/10.1007/s13233-012-0128-9
  • Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101(17). https://doi.org/10.1016/j.biortech.2010.03.112
  • Roy, S., & Rhim, J. W. (2020). Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids and Surfaces B: Biointerfaces, 188. https://doi.org/10.1016/j.colsurfb.2019.110761
  • Seidi Damyeh, M., Mereddy, R., Netzel, M. E., & Sultanbawa, Y. (2020). An insight into curcumin-based photosensitization as a promising and green food preservation technology. Comprehensive Reviews in Food Science and Food Safety, 19(4). https://doi.org/10.1111/1541-4337.12583
  • Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: The story so far. European Journal of Cancer, 41(13). https://doi.org/10.1016/j.ejca.2005.05.009
  • Son, T. Il, Sakuragi, M., Takahashi, S., Obuse, S., Kang, J., Fujishiro, M., Matsushita, H., Gong, J., Shimizu, S., Tajima, Y., Yoshida, Y., Suzuki, K., Yamamoto, T., Nakamura, M., & Ito, Y. (2010). Visible light-induced crosslinkable gelatin. Acta Biomaterialia, 6(10). https://doi.org/10.1016/j.actbio.2010.05.018
  • TS 2409 (2014). Tavuk - Gövde Etleri (Karkas), Türk Standartları Enstitüsü, Ankara.
  • Van Hoorick, J., Ovsianikov, A., Dubruel, P., & Van Vlierberghe, S. (2018). Photo-Crosslinkable Gelatin Hydrogels, Versatile Materials for (High Resolution) Additive Manufacturing. Material Matters, 13(3).
  • Wilson, N. L. W., Rickard, B. J., Saputo, R., & Ho, S. T. (2017). Food waste: The role of date labels, package size, and product category. Food Quality and Preference, 55. https://doi.org/10.1016/j.foodqual.2016.08.004
  • Zhao, J., Lalevée, J., Lu, H., MacQueen, R., Kable, S. H., Schmidt, T. W., Stenzel, M. H., & Xiao, P. (2015). A new role of curcumin: As a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 6(28). https://doi.org/10.1039/c5py00661a

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimi ve Teknolojisi
Bölüm Makaleler
Yazarlar

İdil KİT>
ORTA DOĞU TEKNİK ÜNİVERSİTESİ
0000-0003-3725-3039
Türkiye


Leyla Nesrin KAHYAOĞLU> (Sorumlu Yazar)
ORTA DOĞU TEKNİK ÜNİVERSİTESİ
0000-0003-3548-4378
Türkiye

Destekleyen Kurum Orta Doğu Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası AGEP-314-2019-10101
Teşekkür Orta Doğu Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine bu çalışmaya AGEP-314-2019-10101 nolu proje ile maddi olarak desteklendiği için teşekkür ederiz.
Erken Görünüm Tarihi 19 Ekim 2022
Yayımlanma Tarihi 15 Aralık 2022
Yayınlandığı Sayı Yıl 2022, Cilt 47, Sayı 6

Kaynak Göster

Bibtex @araştırma makalesi { gida1160564, journal = {Gıda}, issn = {1300-3070}, eissn = {1309-6273}, address = {}, publisher = {Gıda Teknolojisi Derneği}, year = {2022}, volume = {47}, number = {6}, pages = {1104 - 1117}, doi = {10.15237/gida.GD22079}, title = {KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ}, key = {cite}, author = {Kit, İdil and Kahyaoğlu, Leyla Nesrin} }
APA Kit, İ. & Kahyaoğlu, L. N. (2022). KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ . Gıda , 47 (6) , 1104-1117 . DOI: 10.15237/gida.GD22079
MLA Kit, İ. , Kahyaoğlu, L. N. "KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ" . Gıda 47 (2022 ): 1104-1117 <https://dergipark.org.tr/tr/pub/gida/issue/73077/1160564>
Chicago Kit, İ. , Kahyaoğlu, L. N. "KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ". Gıda 47 (2022 ): 1104-1117
RIS TY - JOUR T1 - KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ AU - İdilKit, Leyla NesrinKahyaoğlu Y1 - 2022 PY - 2022 N1 - doi: 10.15237/gida.GD22079 DO - 10.15237/gida.GD22079 T2 - Gıda JF - Journal JO - JOR SP - 1104 EP - 1117 VL - 47 IS - 6 SN - 1300-3070-1309-6273 M3 - doi: 10.15237/gida.GD22079 UR - https://doi.org/10.15237/gida.GD22079 Y2 - 2022 ER -
EndNote %0 Gıda KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ %A İdil Kit , Leyla Nesrin Kahyaoğlu %T KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ %D 2022 %J Gıda %P 1300-3070-1309-6273 %V 47 %N 6 %R doi: 10.15237/gida.GD22079 %U 10.15237/gida.GD22079
ISNAD Kit, İdil , Kahyaoğlu, Leyla Nesrin . "KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ". Gıda 47 / 6 (Aralık 2022): 1104-1117 . https://doi.org/10.15237/gida.GD22079
AMA Kit İ. , Kahyaoğlu L. N. KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ. GIDA. 2022; 47(6): 1104-1117.
Vancouver Kit İ. , Kahyaoğlu L. N. KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ. Gıda. 2022; 47(6): 1104-1117.
IEEE İ. Kit ve L. N. Kahyaoğlu , "KURKUMİN TABANLI BİYOPOLİMER FİLMLERİN GÖRÜNÜR IŞIK ALTINDA GELİŞTİRİLMESİ", Gıda, c. 47, sayı. 6, ss. 1104-1117, Ara. 2022, doi:10.15237/gida.GD22079

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/