Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ

Yıl 2024, Cilt: 49 Sayı: 6, 1162 - 1174, 09.12.2024
https://doi.org/10.15237/gida.GD24091

Öz

Karotenoid grubunun üyesi olan β-karoten, içerdiği çift bağlardan dolayı ışık, ısı ve oksijen gibi etmenlerin varlığında kolaylıkla bozulabilen bir moleküldür. β-karotenin bu çevresel faktörlerden korunması amacıyla maya hücreleri (Saccharomyces cerevisiae) ile enkapsüle edilmesi bu çalışmanın amacını oluşturmaktadır. Ayrıca, farklı çözücü (etil alkol ve etil asetat) ve ultrasonikasyon (5, 10, 20, 30 dk) uygulamalarının kapsülleme verimi üzerine etkisinin belirlenmesi çalışmanın diğer amaçlarıdır. Sonuçlar değerlendirildiğinde, en yüksek verim etil asetatın çözücü olarak kullanıldığı kapsüllerde (151.97 µg/g maya) elde edilirken ultrasonikasyon uygulaması ile verimin azaldığı tespit edilmiştir. Etil alkol kullanılan kapsüllerde verim 34.86 µg/g maya olarak belirlenmiş, 30 dk ultrasonikasyon ile 58.35 µg/g’a ulaşmıştır. Enkapsülasyon sonrası β-karotenin yapısında bir değişiklik olmadığı HPLC spektrumu ile doğrulanmıştır. FT-IR spektrumu ve SEM analizi görüntülerinde mikrokapsüller arasında fark görülmemiş ancak ultrasonikasyon işleminin maya çeperine zarar verdiği belirlenmiştir. Çalışmanın sonuçlarına göre, düşük maliyeti ve güvenilirliği ile dikkat çeken maya hücreleri, β-karotenin kapsüllenmesinde potansiyel taşıyan özellikler sunmuştur.

Kaynakça

  • Adetoro, A. O., Opara, U. L., Fawole, O. A. (2020). Effect of carrier agents on the physicochemical and technofunctional properties and antioxidant capacity of freeze-dried pomegranate juice (Punica granatum) powder. Foods, 9(10): 1388. https://doi.org/10.3390/ foods9101388
  • Aydın, Ö., Ünlüel, İ. (2021). Enkapsülasyon teknikleri ve kontrollü salım. Avrupa Bilim ve Teknoloji Dergisi, (32): 640-648. https://doi.org/ 10.31590/ejosat.1039736
  • Ayyaril, S. S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., Shabib, A. G. (2023). Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results in Engineering, 18: 101094. https://doi.org/10.1016/ j.rineng.2023.101094
  • Bilek, S. E., Özkan, G. (2012). Gıda işleme ve depolamanın karotenoidler üzerine etkisi. Akademik Gıda, 10(2): 84-88.
  • Cerit, İ. (2024). Evaluation of the Effects of Plasmolysis, Solvent, and Ultrasonication on Encapsulation of Lycopene in Saccharomyces cerevisiae Cells. Food and Bioprocess Technology, 1-12. https://doi.org/10.1007/s11947-024-03611-w
  • Cerit, I., Erdem, E. N., Yildirim, M., Dursun, M. E., Tekgül, S., Kaya, Z., Demirkol, O. (2023). Optimization of carotenoid extraction from industrial tomato waste by responce surface methodology. GIDA, 48(2): 459 - 470 https://doi.org/10.15237/gida.GD23012
  • Cerit, I., Mehdizade, K., Avcı, A., Demirkol, O. (2024). Production of low‐protein cocoa powder with enzyme‐assisted hydrolysis. Food Science & Nutrition, 12: 3309-3321. https://doi.org/ 10.1002/fsn3.3997
  • Chen, Q. H., Wu, B. K., Pan, D., Sang, L. X., Chang, B. (2021). Beta-carotene and its protective effect on gastric cancer. World Journal of Clinical Cases, 9(23), 6591. https://doi.org/ 10.12998/wjcc.v9.i23.6591
  • Dadkhodazade, E., Mohammadi, A., Shojaee-Aliabadi, S. (2018). Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophysics, 13: 404–411 https://doi.org/10.1007/s11483-018-9546-3
  • de Andrade, E. W. V., Hoskin, R. T., da Silva Pedrini, M. R. (2022). Ultrasound‐assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol. Letters in Applied Microbiology, 75(6): 1538-1548. https://doi.org/ 10.1111/lam.13820
  • Durante, M., Lenucci, M. S., D’Amico, L., Piro, G., Mita, G. (2014). Effect of drying and co-matrix addition on the yield and quality of supercritical CO2 extracted pumpkin (Cucurbita moschata Duch.) oil. Food Chemistry, 148: 314-320. https://doi.org/10.1016/j.foodchem.2013.10.051
  • Fernandes, A. S., do Nascimento, T. C., Jacob-Lopes, E., De Rosso, V. V., Zepka, L. Q. (2018). Carotenoids: A brief overview on its structure, biosynthesis, synthesis, and applications. In: Progress in Carotenoid Research, Zepka, L. Q., Jacob-Lopes, De Rosso, V. V. (chief ed.), InTech Open, the UK, pp. 1-17.
  • Fu, J., Song, L., Guan, J., Sun, C., Zhou, D., Zhu, B. (2021). Encapsulation of Antarctic krill oil in yeast cell microcarriers: Evaluation of oxidative stability and in vitro release. Food Chemistry, 338: 128089. https://doi.org/10.1016/ j.foodchem.2020.128089
  • Genç, Y., Bardakci, H., Yücel, Ç., Karatoprak, G. Ş., Küpeli Akkol, E., Hakan Barak, T., Sobarzo-Sánchez, E. (2020). Oxidative stress and marine carotenoids: Application by using nanoformulations. Marine Drugs, 18(8): 423. https://doi:10.3390/md18080423
  • Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B., Wani, A. A. (2015). Chemistry, encapsulation, and health benefits of β-carotene-A review. Cogent Food & Agriculture, 1(1): 1018696. https://doi.org/10.1080/23311932.2015.1018696
  • Gurkok, S. (2022). A novel carotenoid from Metabacillus idriensis LipT27: production, extraction, partial characterization, biological activities and use in textile dyeing. Archives of Microbiology, 204(6): 296. https://doi.org/ 10.1007/s00203-022-02922-w
  • Hladnik, L., Vicente, F. A., Grilc, M., Likozar, B. (2024). β-Carotene production and extraction: A case study of olive mill wastewater bioremediation by Rhodotorula glutinis with simultaneous carotenoid production. Biomass Conversion and Biorefinery, 14(7): 8459-8467. https://doi.org/ 10.1007/s13399-022-03081-0
  • Jia, Z., Dumont, M. J., Orsat, V. (2016). Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience, 15: 87-104. https://doi.org/10.1016/ j.fbio.2016.05.007
  • Lieu, M. D., Hoang, T. T. H., Nguyen, H. N. T., Dang, T. K. T. (2020). Evaluation of anthocyanin encapsulation efficiency into yeast cell by plasmolysis, ethanol, and ultrasound treatments using alone or in combination. Food Research, 4(2), 557-562. https://doi.org/10.26656/ fr.2017.4(2).283.
  • Lima, P. M., Dacanal, G. C., Pinho, L. S., Perez-Cordoba, L. J., Thomazini, M., Moraes, I. C. F., Favaro-Trindade, C. S. (2021). Production of a rich-carotenoid colorant from pumpkin peels using oil-in-water emulsion followed by spray drying. Food Research International, 148, 110627. https://doi.org/10.1016/j.foodres.2021.110627
  • Liu, S., Tao, M., Huang, K. (2021). Encapsulation of mānuka essential oil in yeast microcarriers for enhanced thermal stability and antimicrobial activity. Food and Bioprocess Technology, 14: 2195-2206. https://doi.org/10.1007/s11947-021-02714-y
  • Maslova, T. G., Markovskaya, E. F., Slemnev, N. N. (2021). Functions of carotenoids in leaves of higher plants. Biology Bulletin Reviews, 11: 476-487. https://doi.org/10.1134/S2079086421050078
  • Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 103: 1095-1114. https://doi.org/10.1007/s00253-018-9557-5
  • Nguyen, T. T., Phan-Thi, H., Pham-Hoang, B. N., Ho, P. T., Tran, T. T. T., Waché, Y. (2018). Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Research International, 107: 275-280. https://doi.org/10.1016/j.foodres.2018.02.044
  • Ozkan, G., Franco, P., De Marco, I., Xiao, J., Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272: 494-506.
  • Pérez-Bassart, Z., Fabra, M. J., Martínez-Abad, A., López-Rubio, A. (2023). Compositional differences of β-glucan-rich extracts from three relevant mushrooms obtained through a sequential extraction protocol. Food Chemistry, 402: 134207. https://doi.org/10.1016/ j.foodchem.2022.134207
  • Pham-Hoang, B. N., Romero-Guido, C., Phan-Thi, H., Waché, Y. (2018). Strategies to improve carotene entry into cells of Yarrowia lipolytica in a goal of encapsulation. Journal of Food Engineering, 224, 88-94. https://doi.org/10.1016/ j.jfoodeng.2017.12.029
  • Rodriguez-Amaya, D. B. (2001). Some physicochemical properties of carotenoids. In: A guide to carotenoid analysis in foods, Volume 71, ILSI press, USA, pp. 14-22.
  • Rubio, F. T. V., Haminiuk, C. W. I., de Freitas Santos, P. D., Martelli-Tosi, M., Thomazini, M., de Carvalho Balieiro, J. C., Fávaro-Trindade, C. S. (2022). Investigation on brewer's spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food & Function, 13(19): 10096-10109. https://doi.org/ 10.1039/D2FO00759B
  • Sarabandi, K., Jafari, S. M., Mahoonak, A. S., Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140; 59-68. https://doi.org/ 10.1016/j.ijbiomac.2019.08.133
  • Singh, R. V., Sambyal, K. (2022). An overview of β-carotene production: Current status and future prospects. Food Bioscience, 47: 101717. https://doi.org/10.1016/j.fbio.2022.101717
  • Wang, J., Hu, X., Chen, J., Wang, T., Huang, X., Chen, G. (2022). The extraction of β-carotene from microalgae for testing their health benefits. Foods, 11(4); 502. https://doi.org/10.3390/ foods11040502
  • Williams, M., 2006. The Merck Index: an Encyclopedia of Chemicals, Drugs, and Biologicals. Drug Development Research, 67 (11): 870. https://doi.org/10.1002/ddr.20159
  • Xu, X., Liu, J., Lu, Y., Lan, H., Tian, L., Zhang, Z., Jiang, L. (2021). Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production. Bioprocess and Biosystems Engineering, 44, 1033-1047. 7 https://doi.org/10.1007/s00449-020-02503-5
  • Zhbankov, R. G., Andrianov, V. M., Marchewka, M. K. (1997). Fourier transform IR and Raman spectroscopy and structure of carbohydrates. Journal of Molecular Structure, 436: 637-654. https://doi.org/10.1016/S0022-2860(97)00141-5

THE EFFECT OF DIFFERENT SOLVENTS AND ULTRASONICATION APPLICATIONS ON Β-CAROTENE ENCAPSULATION WITH YEAST CELLS

Yıl 2024, Cilt: 49 Sayı: 6, 1162 - 1174, 09.12.2024
https://doi.org/10.15237/gida.GD24091

Öz

β-carotene, a member of the carotenoid group, is a molecule that can be easily degraded in the presence of factors such as light, heat and oxygen due to the double bonds it contains. This study aimed to encapsulate β-carotene with yeast cells (Saccharomyces cerevisiae) to protect it from these environmental factors. Moreover, the effects of different solvents (ethyl alcohol, ethyl acetate) and ultrasonication durations (5–30 minutes) on encapsulation efficiency were evaluated. The highest yield (151.97 µg/g yeast) was achieved using ethyl acetate, while ultrasonication reduced efficiency. With ethyl alcohol, yield was 34.86 µg/g yeast, increasing to 58.35 µg/g after 30 minutes of ultrasonication. HPLC confirmed no structural changes in β-carotene after encapsulation. FT-IR spectra and SEM analysis showed no significant differences between microcapsules, although ultrasonication damaged yeast cell walls. These findings suggest that yeast cells, due to their low cost and safety, are a promising option for β-carotene encapsulation.

Kaynakça

  • Adetoro, A. O., Opara, U. L., Fawole, O. A. (2020). Effect of carrier agents on the physicochemical and technofunctional properties and antioxidant capacity of freeze-dried pomegranate juice (Punica granatum) powder. Foods, 9(10): 1388. https://doi.org/10.3390/ foods9101388
  • Aydın, Ö., Ünlüel, İ. (2021). Enkapsülasyon teknikleri ve kontrollü salım. Avrupa Bilim ve Teknoloji Dergisi, (32): 640-648. https://doi.org/ 10.31590/ejosat.1039736
  • Ayyaril, S. S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., Shabib, A. G. (2023). Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results in Engineering, 18: 101094. https://doi.org/10.1016/ j.rineng.2023.101094
  • Bilek, S. E., Özkan, G. (2012). Gıda işleme ve depolamanın karotenoidler üzerine etkisi. Akademik Gıda, 10(2): 84-88.
  • Cerit, İ. (2024). Evaluation of the Effects of Plasmolysis, Solvent, and Ultrasonication on Encapsulation of Lycopene in Saccharomyces cerevisiae Cells. Food and Bioprocess Technology, 1-12. https://doi.org/10.1007/s11947-024-03611-w
  • Cerit, I., Erdem, E. N., Yildirim, M., Dursun, M. E., Tekgül, S., Kaya, Z., Demirkol, O. (2023). Optimization of carotenoid extraction from industrial tomato waste by responce surface methodology. GIDA, 48(2): 459 - 470 https://doi.org/10.15237/gida.GD23012
  • Cerit, I., Mehdizade, K., Avcı, A., Demirkol, O. (2024). Production of low‐protein cocoa powder with enzyme‐assisted hydrolysis. Food Science & Nutrition, 12: 3309-3321. https://doi.org/ 10.1002/fsn3.3997
  • Chen, Q. H., Wu, B. K., Pan, D., Sang, L. X., Chang, B. (2021). Beta-carotene and its protective effect on gastric cancer. World Journal of Clinical Cases, 9(23), 6591. https://doi.org/ 10.12998/wjcc.v9.i23.6591
  • Dadkhodazade, E., Mohammadi, A., Shojaee-Aliabadi, S. (2018). Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophysics, 13: 404–411 https://doi.org/10.1007/s11483-018-9546-3
  • de Andrade, E. W. V., Hoskin, R. T., da Silva Pedrini, M. R. (2022). Ultrasound‐assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol. Letters in Applied Microbiology, 75(6): 1538-1548. https://doi.org/ 10.1111/lam.13820
  • Durante, M., Lenucci, M. S., D’Amico, L., Piro, G., Mita, G. (2014). Effect of drying and co-matrix addition on the yield and quality of supercritical CO2 extracted pumpkin (Cucurbita moschata Duch.) oil. Food Chemistry, 148: 314-320. https://doi.org/10.1016/j.foodchem.2013.10.051
  • Fernandes, A. S., do Nascimento, T. C., Jacob-Lopes, E., De Rosso, V. V., Zepka, L. Q. (2018). Carotenoids: A brief overview on its structure, biosynthesis, synthesis, and applications. In: Progress in Carotenoid Research, Zepka, L. Q., Jacob-Lopes, De Rosso, V. V. (chief ed.), InTech Open, the UK, pp. 1-17.
  • Fu, J., Song, L., Guan, J., Sun, C., Zhou, D., Zhu, B. (2021). Encapsulation of Antarctic krill oil in yeast cell microcarriers: Evaluation of oxidative stability and in vitro release. Food Chemistry, 338: 128089. https://doi.org/10.1016/ j.foodchem.2020.128089
  • Genç, Y., Bardakci, H., Yücel, Ç., Karatoprak, G. Ş., Küpeli Akkol, E., Hakan Barak, T., Sobarzo-Sánchez, E. (2020). Oxidative stress and marine carotenoids: Application by using nanoformulations. Marine Drugs, 18(8): 423. https://doi:10.3390/md18080423
  • Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B., Wani, A. A. (2015). Chemistry, encapsulation, and health benefits of β-carotene-A review. Cogent Food & Agriculture, 1(1): 1018696. https://doi.org/10.1080/23311932.2015.1018696
  • Gurkok, S. (2022). A novel carotenoid from Metabacillus idriensis LipT27: production, extraction, partial characterization, biological activities and use in textile dyeing. Archives of Microbiology, 204(6): 296. https://doi.org/ 10.1007/s00203-022-02922-w
  • Hladnik, L., Vicente, F. A., Grilc, M., Likozar, B. (2024). β-Carotene production and extraction: A case study of olive mill wastewater bioremediation by Rhodotorula glutinis with simultaneous carotenoid production. Biomass Conversion and Biorefinery, 14(7): 8459-8467. https://doi.org/ 10.1007/s13399-022-03081-0
  • Jia, Z., Dumont, M. J., Orsat, V. (2016). Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience, 15: 87-104. https://doi.org/10.1016/ j.fbio.2016.05.007
  • Lieu, M. D., Hoang, T. T. H., Nguyen, H. N. T., Dang, T. K. T. (2020). Evaluation of anthocyanin encapsulation efficiency into yeast cell by plasmolysis, ethanol, and ultrasound treatments using alone or in combination. Food Research, 4(2), 557-562. https://doi.org/10.26656/ fr.2017.4(2).283.
  • Lima, P. M., Dacanal, G. C., Pinho, L. S., Perez-Cordoba, L. J., Thomazini, M., Moraes, I. C. F., Favaro-Trindade, C. S. (2021). Production of a rich-carotenoid colorant from pumpkin peels using oil-in-water emulsion followed by spray drying. Food Research International, 148, 110627. https://doi.org/10.1016/j.foodres.2021.110627
  • Liu, S., Tao, M., Huang, K. (2021). Encapsulation of mānuka essential oil in yeast microcarriers for enhanced thermal stability and antimicrobial activity. Food and Bioprocess Technology, 14: 2195-2206. https://doi.org/10.1007/s11947-021-02714-y
  • Maslova, T. G., Markovskaya, E. F., Slemnev, N. N. (2021). Functions of carotenoids in leaves of higher plants. Biology Bulletin Reviews, 11: 476-487. https://doi.org/10.1134/S2079086421050078
  • Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 103: 1095-1114. https://doi.org/10.1007/s00253-018-9557-5
  • Nguyen, T. T., Phan-Thi, H., Pham-Hoang, B. N., Ho, P. T., Tran, T. T. T., Waché, Y. (2018). Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Research International, 107: 275-280. https://doi.org/10.1016/j.foodres.2018.02.044
  • Ozkan, G., Franco, P., De Marco, I., Xiao, J., Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272: 494-506.
  • Pérez-Bassart, Z., Fabra, M. J., Martínez-Abad, A., López-Rubio, A. (2023). Compositional differences of β-glucan-rich extracts from three relevant mushrooms obtained through a sequential extraction protocol. Food Chemistry, 402: 134207. https://doi.org/10.1016/ j.foodchem.2022.134207
  • Pham-Hoang, B. N., Romero-Guido, C., Phan-Thi, H., Waché, Y. (2018). Strategies to improve carotene entry into cells of Yarrowia lipolytica in a goal of encapsulation. Journal of Food Engineering, 224, 88-94. https://doi.org/10.1016/ j.jfoodeng.2017.12.029
  • Rodriguez-Amaya, D. B. (2001). Some physicochemical properties of carotenoids. In: A guide to carotenoid analysis in foods, Volume 71, ILSI press, USA, pp. 14-22.
  • Rubio, F. T. V., Haminiuk, C. W. I., de Freitas Santos, P. D., Martelli-Tosi, M., Thomazini, M., de Carvalho Balieiro, J. C., Fávaro-Trindade, C. S. (2022). Investigation on brewer's spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food & Function, 13(19): 10096-10109. https://doi.org/ 10.1039/D2FO00759B
  • Sarabandi, K., Jafari, S. M., Mahoonak, A. S., Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140; 59-68. https://doi.org/ 10.1016/j.ijbiomac.2019.08.133
  • Singh, R. V., Sambyal, K. (2022). An overview of β-carotene production: Current status and future prospects. Food Bioscience, 47: 101717. https://doi.org/10.1016/j.fbio.2022.101717
  • Wang, J., Hu, X., Chen, J., Wang, T., Huang, X., Chen, G. (2022). The extraction of β-carotene from microalgae for testing their health benefits. Foods, 11(4); 502. https://doi.org/10.3390/ foods11040502
  • Williams, M., 2006. The Merck Index: an Encyclopedia of Chemicals, Drugs, and Biologicals. Drug Development Research, 67 (11): 870. https://doi.org/10.1002/ddr.20159
  • Xu, X., Liu, J., Lu, Y., Lan, H., Tian, L., Zhang, Z., Jiang, L. (2021). Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production. Bioprocess and Biosystems Engineering, 44, 1033-1047. 7 https://doi.org/10.1007/s00449-020-02503-5
  • Zhbankov, R. G., Andrianov, V. M., Marchewka, M. K. (1997). Fourier transform IR and Raman spectroscopy and structure of carbohydrates. Journal of Molecular Structure, 436: 637-654. https://doi.org/10.1016/S0022-2860(97)00141-5
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

İnci Cerit 0000-0002-3106-8951

Rabia Güneş 0009-0009-3568-6376

Goncagül Çelik Bu kişi benim 0009-0005-6841-3957

Yayımlanma Tarihi 9 Aralık 2024
Gönderilme Tarihi 5 Eylül 2024
Kabul Tarihi 19 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 6

Kaynak Göster

APA Cerit, İ., Güneş, R., & Çelik, G. (2024). FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ. Gıda, 49(6), 1162-1174. https://doi.org/10.15237/gida.GD24091
AMA Cerit İ, Güneş R, Çelik G. FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ. GIDA. Aralık 2024;49(6):1162-1174. doi:10.15237/gida.GD24091
Chicago Cerit, İnci, Rabia Güneş, ve Goncagül Çelik. “FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ”. Gıda 49, sy. 6 (Aralık 2024): 1162-74. https://doi.org/10.15237/gida.GD24091.
EndNote Cerit İ, Güneş R, Çelik G (01 Aralık 2024) FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ. Gıda 49 6 1162–1174.
IEEE İ. Cerit, R. Güneş, ve G. Çelik, “FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ”, GIDA, c. 49, sy. 6, ss. 1162–1174, 2024, doi: 10.15237/gida.GD24091.
ISNAD Cerit, İnci vd. “FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ”. Gıda 49/6 (Aralık 2024), 1162-1174. https://doi.org/10.15237/gida.GD24091.
JAMA Cerit İ, Güneş R, Çelik G. FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ. GIDA. 2024;49:1162–1174.
MLA Cerit, İnci vd. “FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ”. Gıda, c. 49, sy. 6, 2024, ss. 1162-74, doi:10.15237/gida.GD24091.
Vancouver Cerit İ, Güneş R, Çelik G. FARKLI ÇÖZÜCÜ VE ULTRASONİKASYON UYGULAMALARININ MAYA HÜCRELERİ İLE Β-KAROTEN ENKAPSÜLASYONUNDA ETKİSİ. GIDA. 2024;49(6):1162-74.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/