Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF MICROWAVE-ASSISTED EXTRACTION AND IN VITRO DIGESTION ON THE PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITY OF SUNFLOWER MEAL EXTRACT

Yıl 2025, Cilt: 50 Sayı: 1, 116 - 130, 15.02.2025
https://doi.org/10.15237/gida.GD24119

Öz

The sunflower meal, a by-product of sunflower oil production, is a raw material rich in bioactive compounds. This study investigates the effect of microwave-assisted extraction on the total phenolic (TPC) content and antioxidant activity [2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP)] of extracts from sunflower meal. Changes in antioxidant activity during the in vitro digestion process were also examined. The highest activity was obtained using a 1:20 solid-to-solvent ratio and 120 seconds of microwave application (TPC: 2500.44 mg GAE/100g; DPPH: 2318.49 mg Trolox/100g; FRAP: 3989.26 mg Trolox/100g). Phenolic compounds were confirmed by Ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) analysis. After simulated digestion, DPPH values decreased, while TPC and FRAP values decreased during the gastric phase but increased during the intestinal phase. This study demonstrates the efficiency of microwave-assisted extraction in recovering phenolic compounds from sunflower meal and highlights antioxidant activity changes during in vitro digestion.

Kaynakça

  • Agatonovic-Kustrin, S., Gegechkori, V., Petrovich, D. S., Ilinichna, K. T., Morton, D. W. (2021). HPTLC and FTIR fingerprinting of olive leaves extracts and ATR-FTIR characterisation of major flavonoids and polyphenolics. Molecules, 26(22): 6892, doi: 10.3390/molecules26226892
  • Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I., Azhari, N. H. (2018). Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Industrial Crops and Products, 122: 533-544, doi:10.1016/j.indcrop.2018.06.034
  • Alexandrino, T. D., da Silva, M. G., Ferrari, R. A., Ruiz, A. L. T. G., Duarte, R. M. T., Simabuco, F. M., Pacheco, M. T. B. (2021). Evaluation of some in vitro bioactivities of sunflower phenolic compounds. Current Research in Food Science, 4: 662-669, doi:10.1016/j.crfs.2021.09.007
  • Aquino, G., Basilicata, M. G., Crescenzi, C., Vestuto, V., Salviati, E., Cerrato, M., Campiglia, P. (2023). Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box–Behnken design. Scientific Reports, 13(1): 14923, doi:10.1038/s41598-023-42303-x
  • Avcı, A., Cerit, İ., Hamk, M., Keskin, S. Y. (2023). Improved extraction of bioactive compounds from the pollens of Typha domingensis with sequential conventional and ultrasound treatment. GIDA, 48(2): 256-270, doi:10.15237/gida.GD22129
  • Batista, N. N., de Andrade, D. P., Ramos, C. L., Dias, D. R., Schwan, R. F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90: 313-319. doi:10.1016/j.foodres.2016.10.028
  • Benzie, I. F. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1): 70–76. doi:10.1006/abio.1996.0292
  • Bitwell, C., Indra, S. S., Luke, C., Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19: e01585. doi:10.1016/ j.sciaf.2023.e01585
  • Bouayed, J., Hoffmann, L., Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1): 14-21. doi:10.1016/ j.foodchem.2011.02.052
  • Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30. doi:10.1016/S0023-6438(95)80008-5
  • Cornard, J. P., Lapouge, C., Dangleterre, L., Allet-Bodelot, C. (2008). Complex of lead (II) by chlorogenic acid: Experimental and theoretical study. The Journal of Physical Chemistry A, 112(50):12475-12484. doi:10.1021/jp805463p
  • Gonçalves, S., Moreira, E., Andrade, P. B., Valentão, P., Romano, A. (2019). Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. European Food Research and Technology, 245: 753-762. doi:10.1007/s00217-018-3197-y
  • Gül, V., Öztürk, E., Polat, T. (2016). Importance of sunflower to overcome deficiency of vegetable oil in Turkey. Alinteri Journal of Agriculture Science, 30(1): 70-76, ISSN:1307-3311
  • Hayat, K., Zhang, X., Qamar, S., Hussain, A., Tahir, M. U., Hussain, S. (2020). Microwave heating as a tool to enhance antioxidant activity and release soluble conjugates from Feutrell’s Early (citrus mandarin cultivar) peels. Journal of Food Processing and Preservation, 44(8) e14574 doi: 10.1111/jfpp.14574
  • Jain, P. K., Soni, A., Jain, P., Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research, 8(2): 1-6, ISSN: 0975-7384
  • Jakobek, L., Ištuk, J., Barron, A. R., Matić, P. (2023). Bioactive phenolic compounds from apples during simulated in vitro gastrointestinal digestion: Kinetics of their release. Applied Sciences, 13(14): 8434, doi:10.3390/app13148434
  • Jara-Palacios, M. J., Gonçalves, S., Hernanz, D., Heredia, F. J., Romano, A. (2018). Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International, 109: 433-439, doi:10.1016/j.foodres.2018.04.060
  • Jayawardena, N., Watawana, M. I., Waisundara, V. Y. (2015). Evaluation of the total antioxidant capacity, polyphenol contents and starch hydrolase inhibitory activity of ten edible plants in an in vitro model of digestion. Plant Foods For Human Nutrition, 70: 71-76, doi:10.1016/ j.crfs.2021.09.007
  • Karamać, M., Kosińska, A., Estrella, I., Hernández, T., Dueñas, M. (2012). Antioxidant activity of phenolic compounds identified in sunflower seeds. European Food Research and Technology, 235: 221-230, doi:10.1007/s00217-012-1751-6
  • Kocabaş, T. (2021). Trakya Bölgesi'nde üretilen ayçiçeği küspelerinin kimyasal kalitesinin belirlenmesi üzerine bir araştırma. Trakya Üniversitesi Fen Bilimleri Enstitüsü Biyoteknoloji Anabilim Dalı Yüksek Lisans Tezi, Edirne, Türkiye.
  • Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J. C., Fine, F. (2012). Rapeseed and sunflower meal: A review on biotechnology status and challenges. Applied Microbiology and Biotechnology, 95(5): 1105–1114, doi:10.1007/s00253-012-4250-6
  • Meral, Ü. B. (2019). Ayçiçeği (Helianthus annuus L.) bitkisinin önemi ve üretimine genel bir bakış. International Journal of Life Sciences and Biotechnology, 2(2): 58-71, doi:10.38001/ijlsb.5358897
  • Monje, A. F. B., Parrado, L. X., Gutiérrez-Guzmán, N. (2018). ATR-FTIR for discrimination of espresso and Americano coffee pods. Journal of Food Processing and Preservation, 42(6): e13572.
  • Nedelkov, K. V. (2023). A new approach for processing and use of sunflower meal. Bulgarian Journal of Agricultural Science, 29(2): 384–389.
  • Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97: 67–74, doi:10.1016/j.biopha.2017.10.064
  • Náthia-Neves, G., Alonso, E. (2021). Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: Recovery of chlorogenic acid, phenolic content, and antioxidant capacity. Food and Bioproducts Processing, 125: 57–67, doi:10.1016/ j.fbp.2020.10.008
  • Pavan, V., Sancho, R. A. S., Pastore, G. M. (2014). The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus, and Annona marcgravii). LWT-Food Science and Technology, 59(2): 1247–1251, doi:10.1016/j.lwt.2014.05.040
  • Prado, J. M., Veggi, P. C., Náthia-Neves, G., Meireles, M. A. A. (2020). Extraction methods for obtaining natural blue colorants. Current Analytical Chemistry, 16(5): 504–532, doi:10.2174/ 1573411014666181115125740
  • Rafi, M., Jannah, R., Heryanto, R., Kautsar, A. (2018). UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. International Food Research Journal, 25(2): 643–648.
  • Song, X. C., Canellas, E., Asensio, E., Nerin, C. (2020). Predicting the antioxidant capacity and total phenolic content of bearberry leaves by data fusion of UV–Vis spectroscopy and UHPLC/QTOF-MS. Talanta, 213: 120831, doi:10.1016/j.talanta.2020.120831
  • Taha, F. S., Mohamed, G. F., Mohamed, S. H., Mohamed, S. S., Kamil, M. M. (2011). Optimization of the extraction of total phenolic compounds from sunflower meal and evaluation of the bioactivities of chosen extracts. Journal of Food Science, 76(6): 784–791, doi:10.3923/ajft.2011.1002.1020
  • Taşkın, B., Aksoylu Özbek, Z. (2020). Optimisation of microwave effect on bioactives contents and colour attributes of aqueous green tea extracts by central composite design. Food Measure, 14: 2240–2252, doi:10.1007/s11694-020-00471-8
  • Usman, M., Nakagawa, M., Cheng, S. (2023). Emerging trends in green extraction techniques for bioactive natural products. Processes, 11(12): 3444. doi:10.3390/pr11123444
  • U.S. Department of Agriculture. https://fas.usda.gov/data/production/commodity/2224000 U.S. Pharmacopeia. Test Solutions. 2012. http://www.pharmacopeia.cn>.
  • Wanjari, N. W., Jyotsna Waghmare, J. W. (2015). Phenolic and antioxidant potential of sunflower meal. International Journal of Food Sciences and Nutrition, 66(6): 708–713.
  • Wildermuth, S. R., Young, E. E., Were, L. M. (2016). Chlorogenic acid oxidation and its reaction with sunflower proteins to form green‐colored complexes. Comprehensive Reviews in Food Science and Food Safety, 15(5): 829–843, doi:10.1111/1541-4337.12213
  • Wojdyło, A., Oszmiański, J., Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3): 940–94, doi:10.1016/j.foodchem.2007.04.038
  • Zardo, I., de Espíndola Sobczyk, A., Marczak, L. D. F., et al. (2019). Optimization of ultrasound-assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste and Biomass Valorization, 10(1): 33–44, doi:10.1007/s12649-017-0038-3

MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ

Yıl 2025, Cilt: 50 Sayı: 1, 116 - 130, 15.02.2025
https://doi.org/10.15237/gida.GD24119

Öz

Ayçiçek yağı üretimi sonucu atık ürün olarak açığa çıkan ayçiçeği posası, biyoaktif bileşenler açısından zengin bir hammaddedir. Çalışmanın amacı, mikrodalga destekli ekstraksiyon yönteminin ayçiçeği posasından elde edilen ekstraktların toplam fenolik madde (TFM) içeriği ve antioksidan aktivitesi [2,2-difenil-1-pikrilhidrazil (DPPH) ve ferrik indirgeme antioksidan gücü (FRAP)] üzerindeki etkisini incelemektir. Ayrıca, in vitro sindirim süreci sonrasında antioksidan aktivitedeki değişimler belirlenmiştir. En yüksek aktivite, 1:20 katı:çözücü oranı ve 120 saniyelik mikrodalga uygulamasıyla elde edilmiş (TFM: 2500.44 mg GAE/100g; DPPH: 2318.49 mg Trolox/100g; FRAP: 3989.26 mg Trolox/100g) ve fenolik bileşiklerin varlığı ultraviyole-görünür spektroskopisi (UV-VIS) ve Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR) ile doğrulanmıştır. Simüle edilmiş sindirim sürecinin ardından DPPH değerlerinde bir azalma gözlemlenirken TFM ve FRAP değerlerinin mide aşamasında azaldığı, bağırsak aşamasında ise artış gösterdiği belirlenmiştir. Bu çalışma ile, mikrodalga destekli ekstraksiyon, ayçiçeği posasından fenolik bileşiklerin etkin şekilde elde edilmesini sağlamış ayrıca in vitro sindirim sonrası antioksidan aktivitenin bileşik dinamiklerine bağlı olarak değişim gösterdiğini ortaya koymuştur.

Teşekkür

Hammadde kaynağının temin edilmesi, kurutulup öğütülmesi aşamalarında yardımcı olan Dr. Öğr. Üyesi Recep Güneş’e, FT-IR analizlerinde yardımını esirgemeyen Dr. Arş. Gör. Yavuz Derin’e, UV-VIS spektrum analizinde yardımcı olan Prof. Dr. Ayşe Avcı’ya teşekkürlerimi sunarım.

Kaynakça

  • Agatonovic-Kustrin, S., Gegechkori, V., Petrovich, D. S., Ilinichna, K. T., Morton, D. W. (2021). HPTLC and FTIR fingerprinting of olive leaves extracts and ATR-FTIR characterisation of major flavonoids and polyphenolics. Molecules, 26(22): 6892, doi: 10.3390/molecules26226892
  • Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I., Azhari, N. H. (2018). Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Industrial Crops and Products, 122: 533-544, doi:10.1016/j.indcrop.2018.06.034
  • Alexandrino, T. D., da Silva, M. G., Ferrari, R. A., Ruiz, A. L. T. G., Duarte, R. M. T., Simabuco, F. M., Pacheco, M. T. B. (2021). Evaluation of some in vitro bioactivities of sunflower phenolic compounds. Current Research in Food Science, 4: 662-669, doi:10.1016/j.crfs.2021.09.007
  • Aquino, G., Basilicata, M. G., Crescenzi, C., Vestuto, V., Salviati, E., Cerrato, M., Campiglia, P. (2023). Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box–Behnken design. Scientific Reports, 13(1): 14923, doi:10.1038/s41598-023-42303-x
  • Avcı, A., Cerit, İ., Hamk, M., Keskin, S. Y. (2023). Improved extraction of bioactive compounds from the pollens of Typha domingensis with sequential conventional and ultrasound treatment. GIDA, 48(2): 256-270, doi:10.15237/gida.GD22129
  • Batista, N. N., de Andrade, D. P., Ramos, C. L., Dias, D. R., Schwan, R. F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90: 313-319. doi:10.1016/j.foodres.2016.10.028
  • Benzie, I. F. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1): 70–76. doi:10.1006/abio.1996.0292
  • Bitwell, C., Indra, S. S., Luke, C., Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19: e01585. doi:10.1016/ j.sciaf.2023.e01585
  • Bouayed, J., Hoffmann, L., Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1): 14-21. doi:10.1016/ j.foodchem.2011.02.052
  • Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30. doi:10.1016/S0023-6438(95)80008-5
  • Cornard, J. P., Lapouge, C., Dangleterre, L., Allet-Bodelot, C. (2008). Complex of lead (II) by chlorogenic acid: Experimental and theoretical study. The Journal of Physical Chemistry A, 112(50):12475-12484. doi:10.1021/jp805463p
  • Gonçalves, S., Moreira, E., Andrade, P. B., Valentão, P., Romano, A. (2019). Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. European Food Research and Technology, 245: 753-762. doi:10.1007/s00217-018-3197-y
  • Gül, V., Öztürk, E., Polat, T. (2016). Importance of sunflower to overcome deficiency of vegetable oil in Turkey. Alinteri Journal of Agriculture Science, 30(1): 70-76, ISSN:1307-3311
  • Hayat, K., Zhang, X., Qamar, S., Hussain, A., Tahir, M. U., Hussain, S. (2020). Microwave heating as a tool to enhance antioxidant activity and release soluble conjugates from Feutrell’s Early (citrus mandarin cultivar) peels. Journal of Food Processing and Preservation, 44(8) e14574 doi: 10.1111/jfpp.14574
  • Jain, P. K., Soni, A., Jain, P., Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research, 8(2): 1-6, ISSN: 0975-7384
  • Jakobek, L., Ištuk, J., Barron, A. R., Matić, P. (2023). Bioactive phenolic compounds from apples during simulated in vitro gastrointestinal digestion: Kinetics of their release. Applied Sciences, 13(14): 8434, doi:10.3390/app13148434
  • Jara-Palacios, M. J., Gonçalves, S., Hernanz, D., Heredia, F. J., Romano, A. (2018). Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International, 109: 433-439, doi:10.1016/j.foodres.2018.04.060
  • Jayawardena, N., Watawana, M. I., Waisundara, V. Y. (2015). Evaluation of the total antioxidant capacity, polyphenol contents and starch hydrolase inhibitory activity of ten edible plants in an in vitro model of digestion. Plant Foods For Human Nutrition, 70: 71-76, doi:10.1016/ j.crfs.2021.09.007
  • Karamać, M., Kosińska, A., Estrella, I., Hernández, T., Dueñas, M. (2012). Antioxidant activity of phenolic compounds identified in sunflower seeds. European Food Research and Technology, 235: 221-230, doi:10.1007/s00217-012-1751-6
  • Kocabaş, T. (2021). Trakya Bölgesi'nde üretilen ayçiçeği küspelerinin kimyasal kalitesinin belirlenmesi üzerine bir araştırma. Trakya Üniversitesi Fen Bilimleri Enstitüsü Biyoteknoloji Anabilim Dalı Yüksek Lisans Tezi, Edirne, Türkiye.
  • Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J. C., Fine, F. (2012). Rapeseed and sunflower meal: A review on biotechnology status and challenges. Applied Microbiology and Biotechnology, 95(5): 1105–1114, doi:10.1007/s00253-012-4250-6
  • Meral, Ü. B. (2019). Ayçiçeği (Helianthus annuus L.) bitkisinin önemi ve üretimine genel bir bakış. International Journal of Life Sciences and Biotechnology, 2(2): 58-71, doi:10.38001/ijlsb.5358897
  • Monje, A. F. B., Parrado, L. X., Gutiérrez-Guzmán, N. (2018). ATR-FTIR for discrimination of espresso and Americano coffee pods. Journal of Food Processing and Preservation, 42(6): e13572.
  • Nedelkov, K. V. (2023). A new approach for processing and use of sunflower meal. Bulgarian Journal of Agricultural Science, 29(2): 384–389.
  • Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97: 67–74, doi:10.1016/j.biopha.2017.10.064
  • Náthia-Neves, G., Alonso, E. (2021). Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: Recovery of chlorogenic acid, phenolic content, and antioxidant capacity. Food and Bioproducts Processing, 125: 57–67, doi:10.1016/ j.fbp.2020.10.008
  • Pavan, V., Sancho, R. A. S., Pastore, G. M. (2014). The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus, and Annona marcgravii). LWT-Food Science and Technology, 59(2): 1247–1251, doi:10.1016/j.lwt.2014.05.040
  • Prado, J. M., Veggi, P. C., Náthia-Neves, G., Meireles, M. A. A. (2020). Extraction methods for obtaining natural blue colorants. Current Analytical Chemistry, 16(5): 504–532, doi:10.2174/ 1573411014666181115125740
  • Rafi, M., Jannah, R., Heryanto, R., Kautsar, A. (2018). UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. International Food Research Journal, 25(2): 643–648.
  • Song, X. C., Canellas, E., Asensio, E., Nerin, C. (2020). Predicting the antioxidant capacity and total phenolic content of bearberry leaves by data fusion of UV–Vis spectroscopy and UHPLC/QTOF-MS. Talanta, 213: 120831, doi:10.1016/j.talanta.2020.120831
  • Taha, F. S., Mohamed, G. F., Mohamed, S. H., Mohamed, S. S., Kamil, M. M. (2011). Optimization of the extraction of total phenolic compounds from sunflower meal and evaluation of the bioactivities of chosen extracts. Journal of Food Science, 76(6): 784–791, doi:10.3923/ajft.2011.1002.1020
  • Taşkın, B., Aksoylu Özbek, Z. (2020). Optimisation of microwave effect on bioactives contents and colour attributes of aqueous green tea extracts by central composite design. Food Measure, 14: 2240–2252, doi:10.1007/s11694-020-00471-8
  • Usman, M., Nakagawa, M., Cheng, S. (2023). Emerging trends in green extraction techniques for bioactive natural products. Processes, 11(12): 3444. doi:10.3390/pr11123444
  • U.S. Department of Agriculture. https://fas.usda.gov/data/production/commodity/2224000 U.S. Pharmacopeia. Test Solutions. 2012. http://www.pharmacopeia.cn>.
  • Wanjari, N. W., Jyotsna Waghmare, J. W. (2015). Phenolic and antioxidant potential of sunflower meal. International Journal of Food Sciences and Nutrition, 66(6): 708–713.
  • Wildermuth, S. R., Young, E. E., Were, L. M. (2016). Chlorogenic acid oxidation and its reaction with sunflower proteins to form green‐colored complexes. Comprehensive Reviews in Food Science and Food Safety, 15(5): 829–843, doi:10.1111/1541-4337.12213
  • Wojdyło, A., Oszmiański, J., Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3): 940–94, doi:10.1016/j.foodchem.2007.04.038
  • Zardo, I., de Espíndola Sobczyk, A., Marczak, L. D. F., et al. (2019). Optimization of ultrasound-assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste and Biomass Valorization, 10(1): 33–44, doi:10.1007/s12649-017-0038-3
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Sürdürülebilirliği
Bölüm Makaleler
Yazarlar

İnci Cerit 0000-0002-3106-8951

Yayımlanma Tarihi 15 Şubat 2025
Gönderilme Tarihi 20 Aralık 2024
Kabul Tarihi 12 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 1

Kaynak Göster

APA Cerit, İ. (2025). MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ. Gıda, 50(1), 116-130. https://doi.org/10.15237/gida.GD24119
AMA Cerit İ. MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ. GIDA. Şubat 2025;50(1):116-130. doi:10.15237/gida.GD24119
Chicago Cerit, İnci. “MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ”. Gıda 50, sy. 1 (Şubat 2025): 116-30. https://doi.org/10.15237/gida.GD24119.
EndNote Cerit İ (01 Şubat 2025) MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ. Gıda 50 1 116–130.
IEEE İ. Cerit, “MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ”, GIDA, c. 50, sy. 1, ss. 116–130, 2025, doi: 10.15237/gida.GD24119.
ISNAD Cerit, İnci. “MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ”. Gıda 50/1 (Şubat 2025), 116-130. https://doi.org/10.15237/gida.GD24119.
JAMA Cerit İ. MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ. GIDA. 2025;50:116–130.
MLA Cerit, İnci. “MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ”. Gıda, c. 50, sy. 1, 2025, ss. 116-30, doi:10.15237/gida.GD24119.
Vancouver Cerit İ. MİKRODALGA DESTEKLİ EKSTRAKSİYON VE IN VITRO SİNDİRİMİN AYÇİÇEK POSASI EKSTRAKTININ FENOLİK İÇERİK VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ. GIDA. 2025;50(1):116-30.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/