Araştırma Makalesi
BibTex RIS Kaynak Göster

SAOS, MAOS AND LAOS PROPERTIES OF GLUTEN-FREE DOUGHS FROM DIFFERENT FLOUR BLENDS

Yıl 2025, Cilt: 50 Sayı: 2, 178 - 200
https://doi.org/10.15237/gida.GD24087

Öz

Dough samples of two model gluten-free flour blends (rice:soy flour, 8:2, w/w; buckwheat:soy flour, 8:2, w/w) were compared to soft wheat flour dough from a rheological standpoint to reveal the contribution of soy flour to mechanical properties of these gluten-free doughs under small (SAOS), medium (MAOS), and large (LAOS) deformations. Frequency sweeps indicated %115 and %105 as optimum water levels for rice-soy and buckwheat-soy flour blends, respectively. Replacement with soy flour lowered the elasticity of rice flour dough as evidenced by decreasing G and increasing tan; while the opposite was observed for buckwheat flour dough under SAOS deformations. The order of softening under MAOS deformations was buckwheat-soy dough>wheat dough>rice-soy dough as shown by the elastic Lissajous-Bowditch curves and tan, while it was rice-soy dough>buckwheat-soy dough>wheat dough under LAOS deformations. Ultimately, this study revealed the possibility to manipulate gluten-free formulations through LAOS tests for improved machinability and product quality.

Kaynakça

  • AACC (2010). Approved Methods of Analysis. 11th Edition, AACC International, St. Paul, MN.
  • Alvarez-Ramirez, J., Escarela-Perez, R., Vernon-Carter, E.J., Carrillo-Navas, H. (2019). Large amplitude oscillatory shear (LAOS) rheology of nixtamalized corn masa. Journal of Cereal Science, 88, 31-37.
  • Amagliani, L., O'Regan, J., Kelly, A.L., O'Mahony, J.A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology, 64, 1-12.
  • Ashokan, B.K., Kokini, J.L. (2005). Determination of the WLF constants of cooked soy flour and their dependence on the extent of cooking. Rheologica Acta, 45, 192-201.
  • Bharadwaj, N.A., Ewoldt, R. (2015). Constitutive model fingerprints in medium amplitude oscillatory shear. Journal of Rheology, 59(2), 557-592.
  • Bhinder, S., Kaur, A., Singh, B., Yadav, M.P., Singh, N. (2020). Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International, 130, 108946.
  • Bian, Q., Sittipod, S., Garg, A., Ambrose, R. K. (2015). Bulk flow properties of hard and soft wheat flours. Journal of Cereal Science, 63, 88-94.
  • Cappelli, A., Oliva, N., Cini, E. (2020). A systematic review of gluten-free dough and bread: dough rheology, bread characteristics, and ımprovement strategies. Applied Sciences, 10, 6559.
  • Demirkesen, İ., Mert, B., Sumnu, G., Şahin, S. (2010). Rheological properties of gluten-free bread formulations. Journal of Food Engineering, 96(2), 295-303.
  • Dixit, Y., Bhattacharya, S. (2014). Rheological and sensory behaviour of rice flour dough: effect of selected additives in relation to dough flattening. Journal of Food Science and Technology, 52, 4852-4862.
  • Duvarcı, Ö.Ç., Yazar, G., Doğan, H., Kokini, J.L. (2019). Linear and nonlinear rheological properties of foods. In: Handbook of Food Engineering, Heldman, D.R., Lund, D.B., Sabliov, C., (chief eds.), 3rd edition, CRC Press, Boca Raton, pp. 1-152.
  • Edwards, N.M., Mulvaney, S.J., Scanlon, M.G., Dexter, J.E. (2003). Role of gluten and ıts components in determining durum semolina dough viscoelastic properties. Cereal Chemistry, 80(6), 755-763.
  • Ertürk, M.Y., Le, A.N.M., Kokini, J.L. (2023). Advances in large amplitude oscillatory shear rheology of food materials. Frontiers in Food Science and Technology, 3, 1130165.
  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H. (2007). Rheological fingerprinting of complex fluids using large amplitude oscillatory shear (Laos) flow. Annual Transactions of the Nordic Rheology Society, 15, 3-8.
  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52(6),1427-1458.
  • Ewoldt, R.H., Bharadwaj, N.A. (2013). Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 52, 201-219.
  • Georgopoulos, T., Larsson, H., Eliasson, A.-C. (2004). A comparison of the rheological properties of wheat flour dough and its gluten prepared by ultracentrifugation. Food Hydrocolloids, 18, 143-151.
  • Gujral, H.S., Guardiola, I., Carbonell, J.V., Rosell, C.M. (2003). Effect of cyclodextrinase on dough rheology and bread quality from rice flour. Journal of Agricultural and Food Chemistry, 51, 3814-3818.
  • Hadnađev, T.R.D., Torbica, A.M., Hadnađev, M.S. (2013). Influence of buckwheat flour and carboxymethyl cellulose on rheological behaviour and baking performance of gluten-free cookie dough. Food and Bioprocess Technology, 6, 1770-1781.
  • Huang, Y.C., Lai, H.M. (2010). Noodle quality affected by different cereal starches. Journal of Food Engineering, 97(2), 135-143.
  • Hyun, K., Kim, S.H., Ahn, K.H., Lee, S.J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics, 107(1-3), 51-65.
  • Hyun, K., and Wilhelm, M. (2018). Nonlinear Oscillatory Shear Mechanical Responses. In: Nonlinear Dielectric Spectroscopy, Richert, R. (ed.), Springer, Cham, Switzerland, pp. 321-368.
  • Kim, Y.-R., Cornillon, P., Campanella, O.H., Stroshine, R.L., Lee, S., Shim, J.-Y. (2008). Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting. Journal of Food Science, 73, E1-E8.
  • Korus, J., Juszczak, L., Witczak, M., Ziobro, R. (2020). Effect of citrus fiber on the rheological properties of dough and quality of the gluten-free bread. Applied Sciences, 10(19), 6633.
  • Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C.G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79, 1033-1047.
  • Macias-Rodriguez, B.A., Ewoldt, R.H., Marangoni, A.G. (2018). Nonlinear viscoelasticity of fat crystal networks. Rheologica Acta, 57, 251-266.
  • Mariotti, M., Lucisano, M., Pagani, M.A., Iametti, S. (2008). Macromolecular ınteractions and rheological properties of buckwheat-based dough obtained from differently processed grains. Journal of Agricultural and Food Chemistry, 56, 4258-4267.
  • Morales, A., Kokini, J.L. (1997). Glass transition of soy globulins using differential scanning calorimetry and mechanical spectrometry. Biotechnology Progress, 13, 624-629.
  • Özyiğit, E., Eren, İ., Kumcuoğlu, S, Tavman, Ş. (2020). Large Amplitude Oscillatory Shear (LAOS) analysis of gluten-free cake batters: The effect of dietary fiber enrichment. Journal of Food Engineering, 275, 109867.
  • Puncha-arnon, S., Uttapap, D. (2013). Rice starch vs. rice flour: Differences in their properties when modified by heat–moisture treatment. Carbohydrate Polymers, 91(1), 85-91.
  • Shan, S., Chen, D., Federici, E., Jones, O.G., Campanella, O.H. (2022). The effects of whey protein fibrils on the linear and non-linear rheological properties of a gluten-free dough. Frontiers in Nutrition, 9, 909877.
  • Singh, P.K., Soulages, J.M., Ewoldt, R. (2018). Frequency-sweep mediumamplitude oscillatory shear (MAOS). Journal of Rheology, 62(1), 277-293.
  • Song, H.Y., Hyun, K. (2019). First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS). Korea-Australia Rheology Journal, 31(1), 1-13.
  • Tandazo, A.S., Öztürk, O.K., Hamaker, B.R., Campanella, O.H. (2021). Rice starch and co-proteins improve the rheological properties of zein dough. Journal of Cereal Science, 102, 103334.
  • Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M., Kato, N. (2002). Physicochemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry, 50(7), 2125-2129.
  • Traynham, T.L., Myers, D.J., Carriquiry, A.L., Johnson, L.A. (2007). Evaluation of water-holding capacity for wheat–soy flour blends. Journal of the American Oil Chemists' Society, 84(2), 151.
  • Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., Mandala, I. (2014). Effect of carob flour addition on the rheological properties of gluten-free breads. Food and Bioprocess Technology, 7, 868-876.
  • Vidaurre-Ruiz, J., Matheus-Diaz, S., Salas-Valerio, F., Barraza-Jauregui, G., Schoenlechner, R., Repo-Carrasco-Valencia, R. (2019). Influence of tara gum and xanthan gum on rheological and textural properties of starch-based gluten-free dough and bread. European Food Research and Technology, 245(7), 1347-1355.
  • Villanueva, M., Pérez-Quirce, S., Collar, C., Ronda, F. (2018). Impact of acidification and protein fortification on rheological and thermal properties of wheat, corn, potato and tapioca starch-based gluten free bread doughs. LWT- Food Science and Technology, 96, 446-454.
  • Villanueva, M., Harasym, J., Muñoz, J.M., Ronda, F. (2019). Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocolloids, 90, 472-481.
  • Villanueva, M., Abebe, W., Collar, C., Ronda, F. (2021). Tef [Eragrostis tef (Zucc.) Trotter] variety determines viscoelastic and thermal properties of gluten-free dough and bread quality. LWT- Food Science and Technology, 135, 110065.
  • Vishal, B., Ghosh, P. (2020). Rheological fingerprinting of complex fluids using Large Amplitude Oscillatory Shear (LAOS) flow. Nihon Reoroji Gakkaishi (Journal of the Society of Rheology, Japan), 48(1), 15-25.
  • Weipert, D. (1990). The benefits of basic rheometry in studying dough rheology. Cereal Chemistry, 67, 311-317. Yazar, G., Duvarcı, O., Tavman, Ş., Kokini, J.L. (2016a). Effect of mixing on LAOS properties of hard wheat flour dough. Journal of Food Engineering, 190, 195-204.
  • Yazar, G., Duvarcı, O., Tavman, Ş., Kokini, J.L. (2016b). Non-linear rheological properties of soft wheat flour dough at different stages of farinograph mixing. Applied Rheology, 26, 1-11.
  • Yazar, G., Duvarcı, O., Tavman, Ş, Kokini, J.L. (2017). Non-linear rheological behavior of gluten-free flour doughs and correlations of LAOS parameters with gluten-free bread properties. Journal of Cereal Science, 74, 28-36.
  • Yazar, G., Çağlar Duvarcı, Ö., Yıldırım Ertürk, M., Kokini, J.L. (2019). LAOS (Large Amplitude Oscillatory Shear) Applications for Semisolid Foods. In: Rheology of Semisolid Foods, Joyner, H. (ed.), Springer, Cham, Switzerland, pp. 97-131.
  • Yazar, G., Kokini, J.L., Smith, B. (2022). Effect of endogenous wheat gluten lipids on the non-linear rheological properties of the gluten network. Food Chemistry, 367, 130729.
  • Yazar, G., Demirkesen, İ. (2022). Linear and non‑linear rheological properties of gluten‑free dough systems probed by fundamental methods. Food Engineering Reviews, 15, 56-85.
  • Yazar, G., Kokini, J.L., Smith, B. (2023). Comparison of mixing and non-linear viscoelastic properties of carob germ glutelins and wheat glutenin. Food Hydrocolloids, 143, 108922.
  • Yazar, G. (2023a). Wheat flour quality assessment by fundamental non-linear rheological methods: A critical review. Foods, 12, 3353.
  • Yazar, G. (2023b). Impact of wet gluten content on non-lınear vıscoelastıc propertıes of wheat flour doughs. GIDA, 48(6), 1276-1291.
  • Yoshimura, A.S., Prud’homme, R.K. (1988). Wall slip effects on dynamic oscillatory measurements. Journal of Rheology, 32, 575-584.
  • Zhang, D., Mu, T., Sun, H. (2017). Comparative study of the effect of starches from five different sources on the rheological properties of gluten-free model doughs. Carbohydrate Polymers, 176, 345-355.

FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ

Yıl 2025, Cilt: 50 Sayı: 2, 178 - 200
https://doi.org/10.15237/gida.GD24087

Öz

Glutensiz un karışımları (pirinç:soya unu, 8:2, w/w; karabuğday:soya unu, 8:2, w/w) ile hazırlanan hamurları yumuşak buğday unu hamuruyla reolojik bir açıdan kıyaslanarak soya unu ilavesinin glutensiz hamurların mekanik özellikleri üzerindeki etkisi küçük (SAOS), orta (MAOS) ve yüksek (LAOS) deformasyonlar altında incelenmiştir. Frekans süpürme analizleri kullanılarak pirinç-soya ve karabuğday-soya hamurlarının optimum su kaldırma kapasiteleri sırasıyla %115 ve %105 olarak bulunmuştur. Pirinç ununa soya unu ilavesiyle, SAOS deformasyonlarında azalan G ve artan tan değerleri pirinç unu hamuruna kıyasla elastikiyetin azaldığını gösterirken, karabuğday unu hamuruna soya unu ilavesi tam tersi etki yaratmıştır. MAOS deformasyonları altında elastik Lissajous-Bowditch eğrilerindeki rotasyon ve tan değerlerine göre yumuşama derecesi karabuğday-soya hamuru>buğday hamuru>pirinç-soya hamuru şeklindeyken, LAOS deformasyonları altında bu sıralama pirinç-soya hamuru>karabuğday-soya hamuru>buğday hamuru olarak belirlenmiştir. Sonuç olarak, bu çalışma glutensiz hamur formülasyonlarında yapılabilecek muhtemel değişikliklerin LAOS testleriyle analiz edilip daha gelişmiş işlenebilirlik özelliklerine sahip hamurlar ve dolayısıyla daha kaliteli glutensiz ürünler üretebilmenin mümkün olduğunu göstermiştir.

Kaynakça

  • AACC (2010). Approved Methods of Analysis. 11th Edition, AACC International, St. Paul, MN.
  • Alvarez-Ramirez, J., Escarela-Perez, R., Vernon-Carter, E.J., Carrillo-Navas, H. (2019). Large amplitude oscillatory shear (LAOS) rheology of nixtamalized corn masa. Journal of Cereal Science, 88, 31-37.
  • Amagliani, L., O'Regan, J., Kelly, A.L., O'Mahony, J.A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology, 64, 1-12.
  • Ashokan, B.K., Kokini, J.L. (2005). Determination of the WLF constants of cooked soy flour and their dependence on the extent of cooking. Rheologica Acta, 45, 192-201.
  • Bharadwaj, N.A., Ewoldt, R. (2015). Constitutive model fingerprints in medium amplitude oscillatory shear. Journal of Rheology, 59(2), 557-592.
  • Bhinder, S., Kaur, A., Singh, B., Yadav, M.P., Singh, N. (2020). Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International, 130, 108946.
  • Bian, Q., Sittipod, S., Garg, A., Ambrose, R. K. (2015). Bulk flow properties of hard and soft wheat flours. Journal of Cereal Science, 63, 88-94.
  • Cappelli, A., Oliva, N., Cini, E. (2020). A systematic review of gluten-free dough and bread: dough rheology, bread characteristics, and ımprovement strategies. Applied Sciences, 10, 6559.
  • Demirkesen, İ., Mert, B., Sumnu, G., Şahin, S. (2010). Rheological properties of gluten-free bread formulations. Journal of Food Engineering, 96(2), 295-303.
  • Dixit, Y., Bhattacharya, S. (2014). Rheological and sensory behaviour of rice flour dough: effect of selected additives in relation to dough flattening. Journal of Food Science and Technology, 52, 4852-4862.
  • Duvarcı, Ö.Ç., Yazar, G., Doğan, H., Kokini, J.L. (2019). Linear and nonlinear rheological properties of foods. In: Handbook of Food Engineering, Heldman, D.R., Lund, D.B., Sabliov, C., (chief eds.), 3rd edition, CRC Press, Boca Raton, pp. 1-152.
  • Edwards, N.M., Mulvaney, S.J., Scanlon, M.G., Dexter, J.E. (2003). Role of gluten and ıts components in determining durum semolina dough viscoelastic properties. Cereal Chemistry, 80(6), 755-763.
  • Ertürk, M.Y., Le, A.N.M., Kokini, J.L. (2023). Advances in large amplitude oscillatory shear rheology of food materials. Frontiers in Food Science and Technology, 3, 1130165.
  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H. (2007). Rheological fingerprinting of complex fluids using large amplitude oscillatory shear (Laos) flow. Annual Transactions of the Nordic Rheology Society, 15, 3-8.
  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52(6),1427-1458.
  • Ewoldt, R.H., Bharadwaj, N.A. (2013). Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 52, 201-219.
  • Georgopoulos, T., Larsson, H., Eliasson, A.-C. (2004). A comparison of the rheological properties of wheat flour dough and its gluten prepared by ultracentrifugation. Food Hydrocolloids, 18, 143-151.
  • Gujral, H.S., Guardiola, I., Carbonell, J.V., Rosell, C.M. (2003). Effect of cyclodextrinase on dough rheology and bread quality from rice flour. Journal of Agricultural and Food Chemistry, 51, 3814-3818.
  • Hadnađev, T.R.D., Torbica, A.M., Hadnađev, M.S. (2013). Influence of buckwheat flour and carboxymethyl cellulose on rheological behaviour and baking performance of gluten-free cookie dough. Food and Bioprocess Technology, 6, 1770-1781.
  • Huang, Y.C., Lai, H.M. (2010). Noodle quality affected by different cereal starches. Journal of Food Engineering, 97(2), 135-143.
  • Hyun, K., Kim, S.H., Ahn, K.H., Lee, S.J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics, 107(1-3), 51-65.
  • Hyun, K., and Wilhelm, M. (2018). Nonlinear Oscillatory Shear Mechanical Responses. In: Nonlinear Dielectric Spectroscopy, Richert, R. (ed.), Springer, Cham, Switzerland, pp. 321-368.
  • Kim, Y.-R., Cornillon, P., Campanella, O.H., Stroshine, R.L., Lee, S., Shim, J.-Y. (2008). Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting. Journal of Food Science, 73, E1-E8.
  • Korus, J., Juszczak, L., Witczak, M., Ziobro, R. (2020). Effect of citrus fiber on the rheological properties of dough and quality of the gluten-free bread. Applied Sciences, 10(19), 6633.
  • Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C.G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79, 1033-1047.
  • Macias-Rodriguez, B.A., Ewoldt, R.H., Marangoni, A.G. (2018). Nonlinear viscoelasticity of fat crystal networks. Rheologica Acta, 57, 251-266.
  • Mariotti, M., Lucisano, M., Pagani, M.A., Iametti, S. (2008). Macromolecular ınteractions and rheological properties of buckwheat-based dough obtained from differently processed grains. Journal of Agricultural and Food Chemistry, 56, 4258-4267.
  • Morales, A., Kokini, J.L. (1997). Glass transition of soy globulins using differential scanning calorimetry and mechanical spectrometry. Biotechnology Progress, 13, 624-629.
  • Özyiğit, E., Eren, İ., Kumcuoğlu, S, Tavman, Ş. (2020). Large Amplitude Oscillatory Shear (LAOS) analysis of gluten-free cake batters: The effect of dietary fiber enrichment. Journal of Food Engineering, 275, 109867.
  • Puncha-arnon, S., Uttapap, D. (2013). Rice starch vs. rice flour: Differences in their properties when modified by heat–moisture treatment. Carbohydrate Polymers, 91(1), 85-91.
  • Shan, S., Chen, D., Federici, E., Jones, O.G., Campanella, O.H. (2022). The effects of whey protein fibrils on the linear and non-linear rheological properties of a gluten-free dough. Frontiers in Nutrition, 9, 909877.
  • Singh, P.K., Soulages, J.M., Ewoldt, R. (2018). Frequency-sweep mediumamplitude oscillatory shear (MAOS). Journal of Rheology, 62(1), 277-293.
  • Song, H.Y., Hyun, K. (2019). First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS). Korea-Australia Rheology Journal, 31(1), 1-13.
  • Tandazo, A.S., Öztürk, O.K., Hamaker, B.R., Campanella, O.H. (2021). Rice starch and co-proteins improve the rheological properties of zein dough. Journal of Cereal Science, 102, 103334.
  • Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M., Kato, N. (2002). Physicochemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry, 50(7), 2125-2129.
  • Traynham, T.L., Myers, D.J., Carriquiry, A.L., Johnson, L.A. (2007). Evaluation of water-holding capacity for wheat–soy flour blends. Journal of the American Oil Chemists' Society, 84(2), 151.
  • Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., Mandala, I. (2014). Effect of carob flour addition on the rheological properties of gluten-free breads. Food and Bioprocess Technology, 7, 868-876.
  • Vidaurre-Ruiz, J., Matheus-Diaz, S., Salas-Valerio, F., Barraza-Jauregui, G., Schoenlechner, R., Repo-Carrasco-Valencia, R. (2019). Influence of tara gum and xanthan gum on rheological and textural properties of starch-based gluten-free dough and bread. European Food Research and Technology, 245(7), 1347-1355.
  • Villanueva, M., Pérez-Quirce, S., Collar, C., Ronda, F. (2018). Impact of acidification and protein fortification on rheological and thermal properties of wheat, corn, potato and tapioca starch-based gluten free bread doughs. LWT- Food Science and Technology, 96, 446-454.
  • Villanueva, M., Harasym, J., Muñoz, J.M., Ronda, F. (2019). Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocolloids, 90, 472-481.
  • Villanueva, M., Abebe, W., Collar, C., Ronda, F. (2021). Tef [Eragrostis tef (Zucc.) Trotter] variety determines viscoelastic and thermal properties of gluten-free dough and bread quality. LWT- Food Science and Technology, 135, 110065.
  • Vishal, B., Ghosh, P. (2020). Rheological fingerprinting of complex fluids using Large Amplitude Oscillatory Shear (LAOS) flow. Nihon Reoroji Gakkaishi (Journal of the Society of Rheology, Japan), 48(1), 15-25.
  • Weipert, D. (1990). The benefits of basic rheometry in studying dough rheology. Cereal Chemistry, 67, 311-317. Yazar, G., Duvarcı, O., Tavman, Ş., Kokini, J.L. (2016a). Effect of mixing on LAOS properties of hard wheat flour dough. Journal of Food Engineering, 190, 195-204.
  • Yazar, G., Duvarcı, O., Tavman, Ş., Kokini, J.L. (2016b). Non-linear rheological properties of soft wheat flour dough at different stages of farinograph mixing. Applied Rheology, 26, 1-11.
  • Yazar, G., Duvarcı, O., Tavman, Ş, Kokini, J.L. (2017). Non-linear rheological behavior of gluten-free flour doughs and correlations of LAOS parameters with gluten-free bread properties. Journal of Cereal Science, 74, 28-36.
  • Yazar, G., Çağlar Duvarcı, Ö., Yıldırım Ertürk, M., Kokini, J.L. (2019). LAOS (Large Amplitude Oscillatory Shear) Applications for Semisolid Foods. In: Rheology of Semisolid Foods, Joyner, H. (ed.), Springer, Cham, Switzerland, pp. 97-131.
  • Yazar, G., Kokini, J.L., Smith, B. (2022). Effect of endogenous wheat gluten lipids on the non-linear rheological properties of the gluten network. Food Chemistry, 367, 130729.
  • Yazar, G., Demirkesen, İ. (2022). Linear and non‑linear rheological properties of gluten‑free dough systems probed by fundamental methods. Food Engineering Reviews, 15, 56-85.
  • Yazar, G., Kokini, J.L., Smith, B. (2023). Comparison of mixing and non-linear viscoelastic properties of carob germ glutelins and wheat glutenin. Food Hydrocolloids, 143, 108922.
  • Yazar, G. (2023a). Wheat flour quality assessment by fundamental non-linear rheological methods: A critical review. Foods, 12, 3353.
  • Yazar, G. (2023b). Impact of wet gluten content on non-lınear vıscoelastıc propertıes of wheat flour doughs. GIDA, 48(6), 1276-1291.
  • Yoshimura, A.S., Prud’homme, R.K. (1988). Wall slip effects on dynamic oscillatory measurements. Journal of Rheology, 32, 575-584.
  • Zhang, D., Mu, T., Sun, H. (2017). Comparative study of the effect of starches from five different sources on the rheological properties of gluten-free model doughs. Carbohydrate Polymers, 176, 345-355.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Gıda Teknolojileri, Hububat Teknolojisi, Temel Gıda İşlemleri
Bölüm Makaleler
Yazarlar

Gamze Yazar 0000-0002-9463-2425

Yayımlanma Tarihi
Gönderilme Tarihi 22 Ağustos 2024
Kabul Tarihi 17 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 2

Kaynak Göster

APA Yazar, G. (t.y.). FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ. Gıda, 50(2), 178-200. https://doi.org/10.15237/gida.GD24087
AMA Yazar G. FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ. GIDA. 50(2):178-200. doi:10.15237/gida.GD24087
Chicago Yazar, Gamze. “FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ”. Gıda 50, sy. 2 t.y.: 178-200. https://doi.org/10.15237/gida.GD24087.
EndNote Yazar G FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ. Gıda 50 2 178–200.
IEEE G. Yazar, “FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ”, GIDA, c. 50, sy. 2, ss. 178–200, doi: 10.15237/gida.GD24087.
ISNAD Yazar, Gamze. “FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ”. Gıda 50/2 (t.y.), 178-200. https://doi.org/10.15237/gida.GD24087.
JAMA Yazar G. FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ. GIDA.;50:178–200.
MLA Yazar, Gamze. “FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ”. Gıda, c. 50, sy. 2, ss. 178-00, doi:10.15237/gida.GD24087.
Vancouver Yazar G. FARKLI GLUTENSİZ UN KARIŞIMLARIYLA HAZIRLANMIŞ HAMURLARIN DÜŞÜK (SAOS), ORTA (MAOS) VE YÜKSEK (LAOS) GENLİKLİ SALINIMLI KAYMA ÖZELLİKLERİ. GIDA. 50(2):178-200.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/