Araştırma Makalesi
BibTex RIS Kaynak Göster

PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ

Yıl 2025, Cilt: 50 Sayı: 3, 329 - 341, 10.06.2025
https://doi.org/10.15237/gida.GD24116

Öz

Petrol bazlı ambalajların yaygın kullanımı çevre kirliliğine önemli ölçüde katkıda bulunmakta olup, sürdürülebilir alternatifleri zorunlu kılmaktadır. Bu çalışma, bol miktarda tarımsal yan ürün olan pancar kabuğunu değerlendirerek, mekanik ve bariyer özelliklerini artırmak amacıyla kristalin nanoselüloz (CNC) ile güçlendirilmiş biyokompozit filmlerine dahil etmeyi hedeflemiştir. Filmler, pancar kabuğu, jelatin ve gliserolün karıştırılmasıyla üretilmiş, ardından %3 ve %6 CNC eklenmiştir. Filmler dökülmüş, kurutulmuş ve kalınlık, opaklık, renk, suda çözünürlük, çekme mukavemeti, kopma uzaması ve su buharı geçirgenliği açısından analiz edilmiştir. İstatistiksel analiz, formülasyonlar arasında anlamlı farklar belirlemiştir. %6 CNC eklenmesi, kalınlığı 0.12 mm'den 0.26 mm'ye çıkarmış, opaklığı %40 artırmış, çözünürlüğü %60'tan %40'ın altına düşürmüş, çekme mukavemetini 10 MPa'dan 15.6 MPa'ya yükseltmiş ve su buharı geçirgenliğini %70'in üzerinde azaltarak 0.46 ng·m⁻¹·s⁻¹·Pa⁻¹ seviyesine indirmiştir. Sonuç olarak, CNC takviyesi, pancar kabuğuna dayalı biyokompozit filmlerin mekanik ve bariyer özelliklerini başarıyla geliştirmiş olup, uygulanabilir sürdürülebilir bir ambalaj çözümü sunmaktadır.

Proje Numarası

1919B012305855

Kaynakça

  • Andiati, H. A., Gumilar, J., Wulandari, E. (2023). Utilization of Duck Feet Gelatin with the Additional Glycerol as A Plasticizer on the Physical Properties of Edible Film. Jurnal Ilmıah Peternakan Terpadu, 10(3), 289–299, doi:10.23960/JIPT.V10I3.P289-299
  • Aydogdu, A., Kirtil, E., Sumnu, G., Oztop, M. H., Aydogdu, Y. (2018). Utilization of lentil flour as a biopolymer source for the development of edible films. Journal of Applied Polymer Science, doi:10.1002/ app.46356
  • Aydogdu Emir, A., Akgun, M., Kirtil, E. (2023). Effect of mastic gum integration on improvement of polylactic acid biodegradable films. Polymer Engineering and Science, doi:10.1002/PEN.26304
  • Bergo, P., Sobral, P. J. A. (2007). Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids, 21(8), 1285–1289, doi:10.1016/J.FOODHYD.2006.09.014
  • Caleb, O. J., Belay, Z. A. (2023). Role of biotechnology in the advancement of biodegradable polymers and functionalized additives for food packaging systems. In Current Opinion in Biotechnology (Vol. 83). Elsevier Ltd, doi:10.1016/j.copbio.2023.102972
  • Chaari, M., Elhadef, K., Akermi, S., Ben Akacha, B., Fourati, M., Chakchouk Mtibaa, A., Ennouri, M., Sarkar, T., Shariati, M. A., Rebezov, M., Abdelkafi, S., Mellouli, L., Smaoui, S. (2022). Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants 2022, Vol. 11, Page 2095, 11(11), 2095, doi:10.3390/ANTIOX11112095
  • Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167–175, doi:10.1016/J.CARBPOL.2016.09.062
  • Cheng, J., Gao, R., Zhu, Y., Lin, Q. (2024). Applications of biodegradable materials in food packaging: A review. In Alexandria Engineering Journal (Vol. 91, pp. 70–83). Elsevier B.V, doi:10.1016/j.aej.2024.01.080
  • Fatima, S., Khan, M. R., Ahmad, I., Sadiq, M. B. (2024). Recent advances in modified starch based biodegradable food packaging: A review. In Heliyon (Vol. 10, Issue 6). Elsevier Ltd, doi:10.1016/j.heliyon.2024.e27453
  • Ghosh, T., Roy, S., Khan, A., Mondal, K., Ezati, P., Rhim, J. W. (2024). Agricultural waste-derived cellulose nanocrystals for sustainable active food packaging applications. In Food Hydrocolloids (Vol. 154). Elsevier B.V, doi:10.1016/j.foodhyd.2024.110141
  • Henning, F. G., Ito, V. C., Demiate, I. M., Lacerda, L. G. (2022). Non-conventional starches for biodegradable films: A review focussing on characterisation and recent applications in food packaging. In Carbohydrate Polymer Technologies and Applications (Vol. 4). Elsevier Ltd, doi:10.1016/j.carpta.2021.100157
  • Jamali, A. R., Shaikh, A. A., Dad Chandio, A. (2024). Preparation and characterisation of polyvinyl alcohol/glycerol blend thin films for sustainable flexibility. Materials Research Express, 11(4), doi:10.1088/2053-1591/AD4100
  • Karimi Sani, I., Masoudpour-Behabadi, M., Alizadeh Sani, M., Motalebinejad, H., Juma, A. S. M., Asdagh, A., Eghbaljoo, H., Khodaei, S. M., Rhim, J. W., Mohammadi, F. (2023). Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. In Food Chemistry (Vol. 405). Elsevier Ltd, doi:10.1016/j.foodchem.2022.134964
  • Kirtil, E., Aydogdu, A., Svitova, T., Radke, C. J. (2021). Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packaging and Shelf Life, 29(June), 100687, doi:10.1016/j.fpsl.2021.100687
  • Park, J. W., Scott Whiteside, W., Cho, S. Y. (2008). Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. Lwt - Food Science and Technology, 41(4), 692–700, doi:10.1016/J.LWT.2007.04.015
  • Pedreño, M. A., Escribano, J. (2000). Studying the oxidation and the antiradical activity of betalain from beetroot. Journal of Biological Education, 35(1), 49–51, doi:10.1080/00219266.2000.9655736
  • Reddy, J. P., Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488, doi:10.1016/J.CARBPOL.2014.04.056
  • Ren, H., Huang, Y., Yang, W., Ling, Z., Liu, S., Zheng, S., Li, S., Wang, Y., Pan, L., Fan, W., Zheng, Y. (2024). Emerging nanocellulose from agricultural waste: Recent advances in preparation and applications in biobased food packaging. International Journal of Biological Macromolecules, 277, 134512, doi:10.1016/J.IJBIOMAC.2024.134512
  • Terán Hilares, R., Kamoei, D. V., Ahmed, M. A., da Silva, S. S., Han, J. I., Santos, J. C. dos. (2018). A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors. Ultrasonics Sonochemistry, 43, 219–226, doi:10.1016/j.ultsonch.2018.01.016
  • Verma, S. K., Prasad, A., Sonika, Katiyar, V. (2024). State of art review on sustainable biodegradable polymers with a market overview for sustainability packaging. In Materials Today Sustainability (Vol. 26). Elsevier Ltd, doi:10.1016/j.mtsust.2024.100776
  • Vigneswari, S., Kee, S. H., Hazwan, M. H., Ganeson, K., Tamilselvan, K., Bhubalan, K., Amirul, A. A., Ramakrishna, S. (2024). Turning agricultural waste streams into biodegradable plastic: A step forward into adopting sustainable carbon neutrality. In Journal of Environmental Chemical Engineering (Vol. 12, Issue 2). Elsevier Ltd, doi:10.1016/j.jece.2024.112135
  • Xiao, Y., Liu, Y., Kang, S., Xu, H. (2021). Insight into the formation mechanism of soy protein isolate films improved by cellulose nanocrystals. Food Chemistry, 359, doi:10.1016/J.FOODCHEM.2021.129971
  • Zin, M. M., Alsobh, A., Nath, A., Csighy, A., Bánvölgyi, S. (2022). Concentrations of Beetroot (Beta vulgaris L.) Peel and Flesh Extracts by Reverse Osmosis Membrane. Applied Sciences 2022, Vol. 12, Page 6360, 12(13), 6360, doi:10.3390/APP12136360

VALORIZATION OF BEETROOT SKIN FOR THE PRODUCTION OF NANOCELLULOSE REINFORCED BIOCOMPOSITE FILMS

Yıl 2025, Cilt: 50 Sayı: 3, 329 - 341, 10.06.2025
https://doi.org/10.15237/gida.GD24116

Öz

The extensive use of petroleum-based packaging significantly contributes to environmental pollution, necessitating sustainable alternatives. This study aimed to valorize beetroot skin, an abundant agricultural by-product, by incorporating it into biocomposite films reinforced with crystalline nanocellulose (CNC) to enhance mechanical and barrier properties. Films were produced by blending beetroot skin with gelatin and glycerol, followed by the addition of 3% and 6% CNC. The films were cast, dried, and analyzed for thickness, opacity, color, water solubility, tensile strength, elongation at break, and water vapor permeability. Statistical analysis identified significant differences among formulations. Incorporating 6% CNC increased thickness from 0.12 mm to 0.26 mm, enhanced opacity by 40%, decreased solubility from 60% to below 40%, improved tensile strength from 10 MPa to 15.6 MPa, and reduced water vapor permeability by over 70% to 0.46 ng·m⁻¹·s⁻¹·Pa⁻¹. In conclusion, CNC reinforcement successfully improves beetroot skin-based films, potentially offering a viable sustainable biocomposite film solution in packaging applications.

Proje Numarası

1919B012305855

Kaynakça

  • Andiati, H. A., Gumilar, J., Wulandari, E. (2023). Utilization of Duck Feet Gelatin with the Additional Glycerol as A Plasticizer on the Physical Properties of Edible Film. Jurnal Ilmıah Peternakan Terpadu, 10(3), 289–299, doi:10.23960/JIPT.V10I3.P289-299
  • Aydogdu, A., Kirtil, E., Sumnu, G., Oztop, M. H., Aydogdu, Y. (2018). Utilization of lentil flour as a biopolymer source for the development of edible films. Journal of Applied Polymer Science, doi:10.1002/ app.46356
  • Aydogdu Emir, A., Akgun, M., Kirtil, E. (2023). Effect of mastic gum integration on improvement of polylactic acid biodegradable films. Polymer Engineering and Science, doi:10.1002/PEN.26304
  • Bergo, P., Sobral, P. J. A. (2007). Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids, 21(8), 1285–1289, doi:10.1016/J.FOODHYD.2006.09.014
  • Caleb, O. J., Belay, Z. A. (2023). Role of biotechnology in the advancement of biodegradable polymers and functionalized additives for food packaging systems. In Current Opinion in Biotechnology (Vol. 83). Elsevier Ltd, doi:10.1016/j.copbio.2023.102972
  • Chaari, M., Elhadef, K., Akermi, S., Ben Akacha, B., Fourati, M., Chakchouk Mtibaa, A., Ennouri, M., Sarkar, T., Shariati, M. A., Rebezov, M., Abdelkafi, S., Mellouli, L., Smaoui, S. (2022). Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants 2022, Vol. 11, Page 2095, 11(11), 2095, doi:10.3390/ANTIOX11112095
  • Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167–175, doi:10.1016/J.CARBPOL.2016.09.062
  • Cheng, J., Gao, R., Zhu, Y., Lin, Q. (2024). Applications of biodegradable materials in food packaging: A review. In Alexandria Engineering Journal (Vol. 91, pp. 70–83). Elsevier B.V, doi:10.1016/j.aej.2024.01.080
  • Fatima, S., Khan, M. R., Ahmad, I., Sadiq, M. B. (2024). Recent advances in modified starch based biodegradable food packaging: A review. In Heliyon (Vol. 10, Issue 6). Elsevier Ltd, doi:10.1016/j.heliyon.2024.e27453
  • Ghosh, T., Roy, S., Khan, A., Mondal, K., Ezati, P., Rhim, J. W. (2024). Agricultural waste-derived cellulose nanocrystals for sustainable active food packaging applications. In Food Hydrocolloids (Vol. 154). Elsevier B.V, doi:10.1016/j.foodhyd.2024.110141
  • Henning, F. G., Ito, V. C., Demiate, I. M., Lacerda, L. G. (2022). Non-conventional starches for biodegradable films: A review focussing on characterisation and recent applications in food packaging. In Carbohydrate Polymer Technologies and Applications (Vol. 4). Elsevier Ltd, doi:10.1016/j.carpta.2021.100157
  • Jamali, A. R., Shaikh, A. A., Dad Chandio, A. (2024). Preparation and characterisation of polyvinyl alcohol/glycerol blend thin films for sustainable flexibility. Materials Research Express, 11(4), doi:10.1088/2053-1591/AD4100
  • Karimi Sani, I., Masoudpour-Behabadi, M., Alizadeh Sani, M., Motalebinejad, H., Juma, A. S. M., Asdagh, A., Eghbaljoo, H., Khodaei, S. M., Rhim, J. W., Mohammadi, F. (2023). Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. In Food Chemistry (Vol. 405). Elsevier Ltd, doi:10.1016/j.foodchem.2022.134964
  • Kirtil, E., Aydogdu, A., Svitova, T., Radke, C. J. (2021). Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packaging and Shelf Life, 29(June), 100687, doi:10.1016/j.fpsl.2021.100687
  • Park, J. W., Scott Whiteside, W., Cho, S. Y. (2008). Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. Lwt - Food Science and Technology, 41(4), 692–700, doi:10.1016/J.LWT.2007.04.015
  • Pedreño, M. A., Escribano, J. (2000). Studying the oxidation and the antiradical activity of betalain from beetroot. Journal of Biological Education, 35(1), 49–51, doi:10.1080/00219266.2000.9655736
  • Reddy, J. P., Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488, doi:10.1016/J.CARBPOL.2014.04.056
  • Ren, H., Huang, Y., Yang, W., Ling, Z., Liu, S., Zheng, S., Li, S., Wang, Y., Pan, L., Fan, W., Zheng, Y. (2024). Emerging nanocellulose from agricultural waste: Recent advances in preparation and applications in biobased food packaging. International Journal of Biological Macromolecules, 277, 134512, doi:10.1016/J.IJBIOMAC.2024.134512
  • Terán Hilares, R., Kamoei, D. V., Ahmed, M. A., da Silva, S. S., Han, J. I., Santos, J. C. dos. (2018). A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors. Ultrasonics Sonochemistry, 43, 219–226, doi:10.1016/j.ultsonch.2018.01.016
  • Verma, S. K., Prasad, A., Sonika, Katiyar, V. (2024). State of art review on sustainable biodegradable polymers with a market overview for sustainability packaging. In Materials Today Sustainability (Vol. 26). Elsevier Ltd, doi:10.1016/j.mtsust.2024.100776
  • Vigneswari, S., Kee, S. H., Hazwan, M. H., Ganeson, K., Tamilselvan, K., Bhubalan, K., Amirul, A. A., Ramakrishna, S. (2024). Turning agricultural waste streams into biodegradable plastic: A step forward into adopting sustainable carbon neutrality. In Journal of Environmental Chemical Engineering (Vol. 12, Issue 2). Elsevier Ltd, doi:10.1016/j.jece.2024.112135
  • Xiao, Y., Liu, Y., Kang, S., Xu, H. (2021). Insight into the formation mechanism of soy protein isolate films improved by cellulose nanocrystals. Food Chemistry, 359, doi:10.1016/J.FOODCHEM.2021.129971
  • Zin, M. M., Alsobh, A., Nath, A., Csighy, A., Bánvölgyi, S. (2022). Concentrations of Beetroot (Beta vulgaris L.) Peel and Flesh Extracts by Reverse Osmosis Membrane. Applied Sciences 2022, Vol. 12, Page 6360, 12(13), 6360, doi:10.3390/APP12136360
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Gıda Ambalajlama, Saklama ve İşleme
Bölüm Makaleler
Yazarlar

Rukiye Nur Üngür Bu kişi benim 0009-0009-3012-3689

Gülşah Gürbüz 0009-0007-1051-5955

Emrah Kırtıl 0000-0002-9619-1678

Proje Numarası 1919B012305855
Yayımlanma Tarihi 10 Haziran 2025
Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 14 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 3

Kaynak Göster

APA Üngür, R. N., Gürbüz, G., & Kırtıl, E. (2025). PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ. Gıda, 50(3), 329-341. https://doi.org/10.15237/gida.GD24116
AMA Üngür RN, Gürbüz G, Kırtıl E. PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ. GIDA. Haziran 2025;50(3):329-341. doi:10.15237/gida.GD24116
Chicago Üngür, Rukiye Nur, Gülşah Gürbüz, ve Emrah Kırtıl. “PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ”. Gıda 50, sy. 3 (Haziran 2025): 329-41. https://doi.org/10.15237/gida.GD24116.
EndNote Üngür RN, Gürbüz G, Kırtıl E (01 Haziran 2025) PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ. Gıda 50 3 329–341.
IEEE R. N. Üngür, G. Gürbüz, ve E. Kırtıl, “PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ”, GIDA, c. 50, sy. 3, ss. 329–341, 2025, doi: 10.15237/gida.GD24116.
ISNAD Üngür, Rukiye Nur vd. “PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ”. Gıda 50/3 (Haziran2025), 329-341. https://doi.org/10.15237/gida.GD24116.
JAMA Üngür RN, Gürbüz G, Kırtıl E. PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ. GIDA. 2025;50:329–341.
MLA Üngür, Rukiye Nur vd. “PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ”. Gıda, c. 50, sy. 3, 2025, ss. 329-41, doi:10.15237/gida.GD24116.
Vancouver Üngür RN, Gürbüz G, Kırtıl E. PANCAR KABUĞUNUN NANOSELÜLOZ İLE GÜÇLENDİRİLMİŞ BİYOKOMPOZİT FİLM ÜRETİMİ İÇİN DEĞERLENDİRİLMESİ. GIDA. 2025;50(3):329-41.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/