Derleme
BibTex RIS Kaynak Göster

Extraction Methods of Phenolic Compounds and Their Use as Natural Ingredients

Yıl 2024, , 37 - 47, 22.07.2024
https://doi.org/10.56833/gidaveyem.1512599

Öz

Objective: Phenolic compounds are organic compounds that can be used as natural food additives that have antimicrobial and antioxidant properties. The antimicrobial and antioxidant activity of phenolic compounds is directly related to their extraction method. Today, studies on innovative technologies aimed at minimizing the disadvantages of traditional extraction methods have gained momentum. It is known that extraction methods such as ultrasound-assisted extraction, microwave-assisted extraction and supercritical fluid extraction, which have the advantages of low energy cost, reducing the amount of solvent used and shortening the extraction time, have a positive effect on the quality of the resulting phenolic compounds by reducing the extraction temperature. With the deciphering of the bioactive mechanisms of action of phenolic compounds, their use in the food industry is increasing day by day. Phenolic compounds, which have become a part of the food production process with natural ingredients, have many advantages, such as extending the shelf life of foods, taking part in the stabilization of sensory and textural properties. Dietary foods enriched with phenolic compounds have attracted much attention as a result of the many positive effects of phenolic compounds on health.
Conclusion: In this review study, the extraction methods of phenolic compounds and their use as natural food additives were examined

Kaynakça

  • Alara, O.R., Abdurrahman, N.H. and Ukaegbu, C.I., (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants. 11, 12-17. https://doi.org/10.1016/j.jarmap.2018.07.003
  • Ameer, K., Chun, B.S. and Kwon, J.H., (2017). Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Industrial Crops and Products. 109, 672-685. https://doi.org/10.1016/j.indcrop.2017.09.023
  • Bagade, S.B. and Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical reviews in analytical chemistry, 51(2), 138- 149. https://doi.org/10.1080/10408347.2019.1686966
  • Balasundram, N., Sundram, K. and Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191- 203.https://doi.org/10.1016/j.foodchem.2005.07.042
  • Baltacıoğlu, H., Baltacıoğlu, C., Okur, İ., Tanrıvermiş, A. and Yalçın, M. (2021). Optimization of microwave-assisted extraction of phenolic compounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vibrational Spectroscopy, 113, 103204. https://doi.org/10.1016/j.vibspec.2020.103204
  • Bener, M., Şen, F.B., Önem, A.N., Bekdeşer, B., Çelik, S.E., Lalikoğlu, M., Aşçı, Y.S., Capanoğlu, E. and Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry,385(13),132633. https://doi.org/10.1016/j.foodchem.2022.132633
  • Bi, Y., Lu, Y., Yu, H. and Luo, L. (2019). Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacognosy Magazine, 15, 156-163. https://doi.org/10.4103/pm.pm_347_18
  • Brahmi, F., Blando, F., Sellami, R., Mehdi, S., De Bellis, L., Negro, C., Haddadi-Guemghar, H., Madani, K. and Makhlouf-Boulekbahce, L. (2022). Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Industrial Crops and Products, 184, 114977. https://doi.org/10.1016/j.indcrop.2022114977
  • Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B. and Xia, X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 99,295- 310. https://doi.org/10.1016/j.tifs.2020.03.006
  • Castaldo, L., Narváez, A., Izzo, L., Graziani, G. and Ritieni, A. (2020). In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS. Molecules, 25(9), 2132. https://doi.org/10.3390/molecules25092132
  • Cheng, M., He, J., Wang, H., Li, C., Wu, G., Zhu, K., Chen, X., Zhang, Y. and Tan, L. (2023). Comparison of microwave, ultrasound and ultrasound-microwave assisted solvent extraction methods on phenolic profile and antioxidant activity of extracts from jackfruit (Artocarpus heterophyllus Lam.) pulp. Food Science And Technology, 173, 114395. https://doi.org/10.1016/j.lwt.2022.114395
  • Cong-Cong, X.U., Bing, W.A.N.G., Yi-Qiong, P.U., Jian-Sheng, T.A.O. and Zhang, T. (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chinese journal of natural medicines, 15(10), 721-731. https://doi.org/10.1016/S1875-5364(17)30103-6
  • Çolak, M. (2019). Prunus laurocerasus Meyvesi Yağ Asidi Bileşenlerinin Ultrason Destekli Mikrodalga Ekstraksiyon Yöntemi Kullanılarak Belirlenmesi (Yüksek Lisans Tezi), T.C. Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı, Niğde, TÜRKİYE.
  • Dai, J. and Mumper, RJ. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352. https://doi.org/10.3390/molecules15107313
  • Deng, Y., Wang, W., Zhao, S., Yang, X., Xu, W., Guo, M., Xu, E., Ding, T., Ye, X. and Liu, D. (2022). Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends in Food Science & Technology, 122, 83-96. https://doi.org/10.1016/j.tifs.2022.01.034
  • Dewi, S.R., Stevens, L., Pearson, A.E., Ferrari, R., Irvine, D.J. and Binner, E.R. (2022). Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk. Food and Bioproducts Processing, 134, 210-222. https://doi.org/10.1016/j.fbp.2022.05.011
  • Foti, P., Occhipinti, P.S., Romeo, F.V., Timpanaro, N., Musumeci, T., Randazzo, I. and Caggia, C. (2022). Phenols recovered from olive mill wastewater as natural booster to fortify blood orange juice. Food Chemistry, 393, 133428. https://doi.org/10.1016/j.foodchem.2022.133428
  • Fu, X., Wang, D., Belwal, T., Xie, J., Xu, Y., Zou, L., Zhang, L. and Luo, Z. (2021). Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Food Science and Technology, 144, 111220. https://doi.org/10.1016/j.lwt.2021.111220
  • Güneş, A., Kordali, Ş., Turan, M. and Usanmaz-Bozhüyük, A. (2019). Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Industrial Crops and Products, 137, 208-213. https://doi.org/10.1016/j.indcrop.2019.05.042
  • Güvenç, A. (1997). Etanolün fermantasyon çözeltisinden süperkritik CO2 ekstraksyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • Hadidi, M., Ibarz, A. and Pagan, J. (2020). Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chemistry, 309, 125786. https://doi.org/10.1016/j.foodchem.2019.125786
  • He, B., Zhang, L.L., Yue, X.Y., Liang, J., Jiang, J., Gao, X.L. and Yue, P.X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70- 76. https://doi.org/10.1016/j.foodchem.2016.02.094
  • Ignat, I., Volf I. and Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126, 1821-1835. https://doi.org/10.1016/j.foodchem.2010.12.026
  • Jaiswal N. and Kumar A. (2022). HPLC in the discovery of plant phenolics as antifungal molecules against Candida infection related biofilms. Microchemical Journal, 179, 107572. https://doi.org/10.1016/j.microc.2022.107572
  • Jiao, Y., Quek, S.Y., Gu, M., Gu, Y. and Liu, Y. (2020). Polyphenols from thinned young kiwifruit as natural antioxidant: Protective effects on beef oxidation, physicochemical and sensory properties during storage. Food Control, 108, 106870. https://doi.org/10.1016/j.foodcont.2019.106870
  • Joshi, J.R., Burdman, S., Lipsky, A. and Yedidia, I. (2015). Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Research in Microbiology, 166(6), 535- 545. https://doi.org/10.1016/j.resmic.2015.04.004
  • Kaderides, K., Kyriakoudi, A., Mourtzinos, L. and Goula, A.M. (2021). Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology, 115, 380-390. https://doi.org/10.1016/j.tifs.2021.06.050
  • Khaw, K. Y., Parat, M. O., Shaw, P. N. and Falconer, J. R. (2017). Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 22(7), 1186. https://doi.org/10.3390/molecules22071186
  • Kocer, S., Copur, O. U., Tamer, C. E., Suna, S., Kayahan, S., Uysal, E., Cavuş, S. and Akman, O. 2024. Optimization and characterization of chestnut shell pigment extract obtained microwave assisted extraction by response surface methodology. Food Chemistry, 443, 138424. https://doi.org/10.1016/j.foodchem.2024.138424
  • Koraqi, H., Petkoska, A. T., Khalid, W., Kumar, N. and Pareek, S. (2023). Optimization of experimental conditions for bioactive compounds recovery from raspberry fruits (Rubus idaeus L.) by using combinations of ultrasound-assisted extraction and deep eutectic solvents. Applied Food Research, 3(2), 100346. https://doi.org/10.1016/j.afres.2023.100346
  • Lama-Muñoz, A, Cotreras, M.M., Espínola, F., Moya, M., Romero, I. amd Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320, 126626. https://doi.org/10.1016/j.foodchem.2020.126626
  • Separations Li, J., Huang, S.Y., Deng, Q., Li, G., Su, G., Liu, J. and Wang, H.M.D. (2020). Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish, Food and Chemical Toxicology, 136, 111050. https://doi.org/10.1016/j.fct.2019.111050
  • Li, Y. (2015). Explore microwave extraction technology and its application in food chemistry, Food Safety Guide, 3, 55-56.
  • Liu, J., Ji, F., Chen, F., Guo, W., Yang, M., Huang, S., Zhang, F. and Liu, Y. (2018). Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 159, 513- 523. https://doi.org/10.1016/j.jpba.2018.07.020
  • Macedo, G.A., Santana, A.L., Crawford, L.M., Wang, S.C., Dias, F.F.G. and Moura-Bell, J.M.L.N. (2021). Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace, Lebensmittel-Wissenschaft & Technologie, 138, 110621. https://doi.org/10.1016/j.lwt.2020.110621
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727
  • Marcus, Y. (2018). Extraction by subcritical and supercriticalwater, methanol, ethanol and their mixtures. Separations, 5(1), 4.
  • Moradi, S., Fazlali, A. and Hamedi, H. (2018). Microwave-assisted hydro-distillation of essential oil from rosemary: comparison with traditional distillation. Avicenna Journal of Medical Biotechnology, 10(1), 22-28.
  • Moussa, H., Dahmoune, F., Hentabli, M., Remini, H. and Mouni, L. (2022). Optimization of ultrasound-assisted extraction of phenolic-saponin content from Carthamus caeruleus L. rhizome and predictive model based on support vector regression optimized by dragonfly algorithm. Chemometrics and Intelligent Laboratory Systems, 222, 104493. https://doi.org/10.1016/j.chemolab.2022.104493
  • Nie, J., Chen, D., Ye, J., Lu, Y. and Dai, Z. (2021). Optimization and kinetic modelling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrasonic Sonochemistry, 77, 105671. https://doi.org/10.1016/j.ultsonch.2021.105671
  • Nipornram, S., Tochampa, W., Rattanatraiwong, P. and Singanusong, R. (2018). Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry, 241, 338-345. https://doi.org/10.1016/j.foodchem.2017.08.114
  • Oniszczuk, A. and Olech, M. (2016). Optimization of ultrasound-assisted extraction and LC-ESI–MS/MS analysis of phenolic acids from Brassica oleracea L. var. Sabellica. Industrial Crops and Products, 83, 359-363. https://doi.org/10.1016/j.indcrop.2016.01.015
  • Ramírez-Brewer, D., Quintana, S. E. & García-Zapateiro, L. A. (2023). Modeling and optimization of microwave-assisted extraction of total phenolics content from mango (Mangifera indica) peel using response surface methodology (RSM) and artificial neural networks (ANN). Food Chemistry: X, 101420. https://doi.org/10.1016/j.fochx.2024.101420
  • Pinto, D., López-Yerena, A., Lamuela-Raventós, R., Vallverdú-Queralt, A., Delerue-Matos, C. and Rodrigues, F., (2024). Predicting the effects of in-vitro digestion in the bioactivity and bioaccessibility of antioxidant compounds extracted from chestnut shells by supercritical fluid extraction – A metabolomic approach. Food Chemistry, 435, 137581. https://doi.org/10.1016/j.foodchem.2023.137581
  • Pereira, C.G. and Meireles, M.A.A. (2010). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340-372. https://doi.org/10.1007/s11947-009-0263-2
  • Pérez-Jiménez, J. and Saura-Calixto, F. (2006). “Effect of Solvent and Certain Food Constituents on Different Antioxidant Capacity Assays”, Food Research International, 39(7):791-800.
  • Qian, J., Li, Y., Gao, J., He, Z. and Yi, S. (2020). The effects of ultrasonic intensity on physicochemical properties of Chinese fir. Ultrasonic Sonochemistry, 64, 104985. https://doi.org/10.1016/j.ultsonch.2020.104985
  • Rahman, M.M., Byanju, B., Grewell, D. and Buddhi, P.L. (2021). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019. https://doi.org/10.1016/j.ultsonch.2020.105019
  • Saklar-Ayyildiz, S., Pelvan, E. and Karadeniz, B. (2024). Optimization of accelerated solvent extraction, ultrasound assisted and supercritical fluid extraction to obtain carnosol, carnosic acid and rosmarinic acid from rosemary. Sustainable Chemistry and Pharmacy, 37, 101422. https://doi.org/10.1016/j.scp.2023.101422
  • Santos, A.L. (2018). Recuperação de compostos bioativos do resíduo do processamento do café (silverskin): Otimização do processo de extração; caracterização química, capacidade kahveidante e toxicidade dos extratos (Doktora Tezi), Universidade Federal Do Rio Grande Do Sul., Brazil.
  • Setyaningsih, W., Saputro, I.E., Carrera, C.A. and Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288(1), 221-227. https://doi.org/10.1016/j.foodchem.2019.02.107
  • Shahidi, F. and Ambigaipala, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review, Journal of Functional Foods, 18, 820-897. https://doi.org/10.1016/j.jff.2015.06.018
  • Singh, P., Pandey, V. K., Chakraborty, S., Dash, K. K., Singh, R., Shaikh, A. M. and Béla, K. (2023). Ultrasound-assisted extraction of phytochemicals from green coconut shell: Optimization by integrated artificial neural network and particle swarm technique. Heliyon, 9(12), e22438. https://doi.org/10.1016/j.heliyon.2023.e22438
  • Solana, M., Boschiero, I., Dall’Acqua, S. and Bertucco, A. (2015). A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. The Journal of Supercritical Fluids. 100, 201-208. https://doi.org/10.1016/j.supflu.2015.02.014
  • Soliman, T.N. and Shehata, S.H. (2019). Characteristics of fermented camel’s milk fortified with kiwi or avocado fruits, Acta Scientiarum Polonorum, Technologia Alimentaria, 18(1), 53-63. https://doi.org/10.17306/J.AFS.2019.0602
  • Souza, O.A., Ramalhão, V.G.S., Trentin, L.M., Funari, C.S., Carneiro, R.L., Bolzani, V.S. and Rinaldo, D. (2022). Combining natural deep eutectic solvent and microwave irradiation towards the eco-friendly and optimized extraction of bioactive phenolics from Eugenia uniflora L. Sustainable Chemistry and Pharmacy, 26, 100618. https://doi.org/10.1016/j.scp.2022.100618
  • Taglieri, I., Sanmartin, C., Venturi, F., Macaluso, M., Bianchi, A., Sgherri, C., Quartacci, M.F., De Leo, D., Pistelli, L., Palla, F., Flamini, G. and Zinnai, A. (2021). Bread fortified with cooked purple potato flour and Citrus albedo: An evaluation of its compositional and sensorial properties, Foods, 10(5), 942. https://doi.org/10.3390/foods10050942
  • Taşkıran, Z. G., Dündar, A., and Yıldız, H. (2023). Bitkisel Materyallerdeki Biyoaktif Bileşenlerin Ekstraksiyonunda Kullanılan Konvansiyonel ve Yeni Nesil Ekstraksiyon Yöntemleri. Gıda Bilimi ve Mühendisliği Araştırmaları, 2(2), 50-58.
  • Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, Guillermo, Mendiola, J.A. and Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131, 99-105. https://doi.org/10.1016/j.supflu.2017.09.011
  • Wani, K.M. and Uppaluri, R.V.S. (2022). Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Applied Food Research, 2(1), 100096. https://doi.org/10.1016/j.afres.2022.100096
  • Yusoff, I.M., Taher, Z.M., Rahmat, Z. and Chua, L.S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268
  • Zago, E., Tiller, C., De Leneer, G., Nandasiri, R., Delporte, C., Bernaest, K.V. and Shavandi, A. (2022). Sustainable production of low molecular weight phenolic compounds from Belgian Brewers' spent grain. Bioresource Technology Reports, 17, 100964. https://doi.org/10.1016/j.biteb.2022.100964
  • Zieniuk, B., Groborz, K., Wołoszynowska, M., Ratusz, K., Białecka-Florjańczyk, E. and Fabiszewska, A. (2021). Enzymatic Synthesis of Lipophilic Esters of Phenolic Compounds, Evaluation of Their Antioxidant Activity and Effect on the Oxidative Stability of Selected Oils. Biomolecules, 11(2), 314. https://doi.org/10.3390/biom11020314

Fenolik bileşiklerin ekstraksiyon yöntemleri ve doğal içerik olarak kullanımı

Yıl 2024, , 37 - 47, 22.07.2024
https://doi.org/10.56833/gidaveyem.1512599

Öz

Öz
Amaç: Fenolik bileşikler, antimikrobiyal ve antioksidan özelliklere sahip olan doğal gıda katkı maddesi olarak kullanılabilen organik bileşiklerdir. Fenolik bileşiklerin antimikrobiyal ve antioksidan etkinliği ekstraksiyon yöntemi ile doğrudan ilişkilidir. Günümüzde geleneksel ekstraksiyon yöntemlerinin dezavantajlarının minimize edilmesinin amaçlandığı yenilikçi teknolojiler üzerinde çalışmalar hız kazanmıştır. Düşük enerji maliyeti, kullanılan çözgen miktarının azaltılması ve ekstraksiyon süresinin kısaltılması gibi avantajlara sahip olan ultrason destekli ekstraksiyon, mikrodalga destekli ekstraksiyon ve süperkritik akışkan ekstraksiyon gibi ekstraksiyon yöntemlerinin, ekstraksiyon sıcaklığını düşürerek elde edilen fenolik bileşiğin kalitesi üzerinde olumlu etkiler sağladığı bilinmektedir. Fenolik bileşiklerin biyoaktif etki mekanizmalarının anlaşılmasıyla gıda endüstrisinde kullanımı gün geçtikçe artmaktadır. Doğal içerikli gıda üretim prosesinin bir parçası haline gelen fenolik bileşikler; gıdaların raf ömrünün uzatılması, duyusal ve tekstürel özelliklerin stabilizasyonunda görev alması gibi birçok avantaja sahiptir. Fenolik bileşiklerin sağlık üzerindeki birçok olumlu etkisinin aydınlatılması ile fenolik bileşiklerle zenginleştirilmiş diyet gıdalar oldukça ilgi görmektedir.
Sonuç: Bu derleme çalışmasında, fenolik bileşiklerin ekstraksiyon yöntemleri ve doğal gıda katkı maddesi olarak kullanımı irdelenmiştir.

Kaynakça

  • Alara, O.R., Abdurrahman, N.H. and Ukaegbu, C.I., (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants. 11, 12-17. https://doi.org/10.1016/j.jarmap.2018.07.003
  • Ameer, K., Chun, B.S. and Kwon, J.H., (2017). Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Industrial Crops and Products. 109, 672-685. https://doi.org/10.1016/j.indcrop.2017.09.023
  • Bagade, S.B. and Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical reviews in analytical chemistry, 51(2), 138- 149. https://doi.org/10.1080/10408347.2019.1686966
  • Balasundram, N., Sundram, K. and Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191- 203.https://doi.org/10.1016/j.foodchem.2005.07.042
  • Baltacıoğlu, H., Baltacıoğlu, C., Okur, İ., Tanrıvermiş, A. and Yalçın, M. (2021). Optimization of microwave-assisted extraction of phenolic compounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vibrational Spectroscopy, 113, 103204. https://doi.org/10.1016/j.vibspec.2020.103204
  • Bener, M., Şen, F.B., Önem, A.N., Bekdeşer, B., Çelik, S.E., Lalikoğlu, M., Aşçı, Y.S., Capanoğlu, E. and Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry,385(13),132633. https://doi.org/10.1016/j.foodchem.2022.132633
  • Bi, Y., Lu, Y., Yu, H. and Luo, L. (2019). Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacognosy Magazine, 15, 156-163. https://doi.org/10.4103/pm.pm_347_18
  • Brahmi, F., Blando, F., Sellami, R., Mehdi, S., De Bellis, L., Negro, C., Haddadi-Guemghar, H., Madani, K. and Makhlouf-Boulekbahce, L. (2022). Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Industrial Crops and Products, 184, 114977. https://doi.org/10.1016/j.indcrop.2022114977
  • Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B. and Xia, X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 99,295- 310. https://doi.org/10.1016/j.tifs.2020.03.006
  • Castaldo, L., Narváez, A., Izzo, L., Graziani, G. and Ritieni, A. (2020). In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS. Molecules, 25(9), 2132. https://doi.org/10.3390/molecules25092132
  • Cheng, M., He, J., Wang, H., Li, C., Wu, G., Zhu, K., Chen, X., Zhang, Y. and Tan, L. (2023). Comparison of microwave, ultrasound and ultrasound-microwave assisted solvent extraction methods on phenolic profile and antioxidant activity of extracts from jackfruit (Artocarpus heterophyllus Lam.) pulp. Food Science And Technology, 173, 114395. https://doi.org/10.1016/j.lwt.2022.114395
  • Cong-Cong, X.U., Bing, W.A.N.G., Yi-Qiong, P.U., Jian-Sheng, T.A.O. and Zhang, T. (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chinese journal of natural medicines, 15(10), 721-731. https://doi.org/10.1016/S1875-5364(17)30103-6
  • Çolak, M. (2019). Prunus laurocerasus Meyvesi Yağ Asidi Bileşenlerinin Ultrason Destekli Mikrodalga Ekstraksiyon Yöntemi Kullanılarak Belirlenmesi (Yüksek Lisans Tezi), T.C. Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı, Niğde, TÜRKİYE.
  • Dai, J. and Mumper, RJ. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352. https://doi.org/10.3390/molecules15107313
  • Deng, Y., Wang, W., Zhao, S., Yang, X., Xu, W., Guo, M., Xu, E., Ding, T., Ye, X. and Liu, D. (2022). Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends in Food Science & Technology, 122, 83-96. https://doi.org/10.1016/j.tifs.2022.01.034
  • Dewi, S.R., Stevens, L., Pearson, A.E., Ferrari, R., Irvine, D.J. and Binner, E.R. (2022). Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk. Food and Bioproducts Processing, 134, 210-222. https://doi.org/10.1016/j.fbp.2022.05.011
  • Foti, P., Occhipinti, P.S., Romeo, F.V., Timpanaro, N., Musumeci, T., Randazzo, I. and Caggia, C. (2022). Phenols recovered from olive mill wastewater as natural booster to fortify blood orange juice. Food Chemistry, 393, 133428. https://doi.org/10.1016/j.foodchem.2022.133428
  • Fu, X., Wang, D., Belwal, T., Xie, J., Xu, Y., Zou, L., Zhang, L. and Luo, Z. (2021). Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Food Science and Technology, 144, 111220. https://doi.org/10.1016/j.lwt.2021.111220
  • Güneş, A., Kordali, Ş., Turan, M. and Usanmaz-Bozhüyük, A. (2019). Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Industrial Crops and Products, 137, 208-213. https://doi.org/10.1016/j.indcrop.2019.05.042
  • Güvenç, A. (1997). Etanolün fermantasyon çözeltisinden süperkritik CO2 ekstraksyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • Hadidi, M., Ibarz, A. and Pagan, J. (2020). Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chemistry, 309, 125786. https://doi.org/10.1016/j.foodchem.2019.125786
  • He, B., Zhang, L.L., Yue, X.Y., Liang, J., Jiang, J., Gao, X.L. and Yue, P.X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70- 76. https://doi.org/10.1016/j.foodchem.2016.02.094
  • Ignat, I., Volf I. and Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126, 1821-1835. https://doi.org/10.1016/j.foodchem.2010.12.026
  • Jaiswal N. and Kumar A. (2022). HPLC in the discovery of plant phenolics as antifungal molecules against Candida infection related biofilms. Microchemical Journal, 179, 107572. https://doi.org/10.1016/j.microc.2022.107572
  • Jiao, Y., Quek, S.Y., Gu, M., Gu, Y. and Liu, Y. (2020). Polyphenols from thinned young kiwifruit as natural antioxidant: Protective effects on beef oxidation, physicochemical and sensory properties during storage. Food Control, 108, 106870. https://doi.org/10.1016/j.foodcont.2019.106870
  • Joshi, J.R., Burdman, S., Lipsky, A. and Yedidia, I. (2015). Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Research in Microbiology, 166(6), 535- 545. https://doi.org/10.1016/j.resmic.2015.04.004
  • Kaderides, K., Kyriakoudi, A., Mourtzinos, L. and Goula, A.M. (2021). Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology, 115, 380-390. https://doi.org/10.1016/j.tifs.2021.06.050
  • Khaw, K. Y., Parat, M. O., Shaw, P. N. and Falconer, J. R. (2017). Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 22(7), 1186. https://doi.org/10.3390/molecules22071186
  • Kocer, S., Copur, O. U., Tamer, C. E., Suna, S., Kayahan, S., Uysal, E., Cavuş, S. and Akman, O. 2024. Optimization and characterization of chestnut shell pigment extract obtained microwave assisted extraction by response surface methodology. Food Chemistry, 443, 138424. https://doi.org/10.1016/j.foodchem.2024.138424
  • Koraqi, H., Petkoska, A. T., Khalid, W., Kumar, N. and Pareek, S. (2023). Optimization of experimental conditions for bioactive compounds recovery from raspberry fruits (Rubus idaeus L.) by using combinations of ultrasound-assisted extraction and deep eutectic solvents. Applied Food Research, 3(2), 100346. https://doi.org/10.1016/j.afres.2023.100346
  • Lama-Muñoz, A, Cotreras, M.M., Espínola, F., Moya, M., Romero, I. amd Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320, 126626. https://doi.org/10.1016/j.foodchem.2020.126626
  • Separations Li, J., Huang, S.Y., Deng, Q., Li, G., Su, G., Liu, J. and Wang, H.M.D. (2020). Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish, Food and Chemical Toxicology, 136, 111050. https://doi.org/10.1016/j.fct.2019.111050
  • Li, Y. (2015). Explore microwave extraction technology and its application in food chemistry, Food Safety Guide, 3, 55-56.
  • Liu, J., Ji, F., Chen, F., Guo, W., Yang, M., Huang, S., Zhang, F. and Liu, Y. (2018). Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 159, 513- 523. https://doi.org/10.1016/j.jpba.2018.07.020
  • Macedo, G.A., Santana, A.L., Crawford, L.M., Wang, S.C., Dias, F.F.G. and Moura-Bell, J.M.L.N. (2021). Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace, Lebensmittel-Wissenschaft & Technologie, 138, 110621. https://doi.org/10.1016/j.lwt.2020.110621
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727
  • Marcus, Y. (2018). Extraction by subcritical and supercriticalwater, methanol, ethanol and their mixtures. Separations, 5(1), 4.
  • Moradi, S., Fazlali, A. and Hamedi, H. (2018). Microwave-assisted hydro-distillation of essential oil from rosemary: comparison with traditional distillation. Avicenna Journal of Medical Biotechnology, 10(1), 22-28.
  • Moussa, H., Dahmoune, F., Hentabli, M., Remini, H. and Mouni, L. (2022). Optimization of ultrasound-assisted extraction of phenolic-saponin content from Carthamus caeruleus L. rhizome and predictive model based on support vector regression optimized by dragonfly algorithm. Chemometrics and Intelligent Laboratory Systems, 222, 104493. https://doi.org/10.1016/j.chemolab.2022.104493
  • Nie, J., Chen, D., Ye, J., Lu, Y. and Dai, Z. (2021). Optimization and kinetic modelling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrasonic Sonochemistry, 77, 105671. https://doi.org/10.1016/j.ultsonch.2021.105671
  • Nipornram, S., Tochampa, W., Rattanatraiwong, P. and Singanusong, R. (2018). Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry, 241, 338-345. https://doi.org/10.1016/j.foodchem.2017.08.114
  • Oniszczuk, A. and Olech, M. (2016). Optimization of ultrasound-assisted extraction and LC-ESI–MS/MS analysis of phenolic acids from Brassica oleracea L. var. Sabellica. Industrial Crops and Products, 83, 359-363. https://doi.org/10.1016/j.indcrop.2016.01.015
  • Ramírez-Brewer, D., Quintana, S. E. & García-Zapateiro, L. A. (2023). Modeling and optimization of microwave-assisted extraction of total phenolics content from mango (Mangifera indica) peel using response surface methodology (RSM) and artificial neural networks (ANN). Food Chemistry: X, 101420. https://doi.org/10.1016/j.fochx.2024.101420
  • Pinto, D., López-Yerena, A., Lamuela-Raventós, R., Vallverdú-Queralt, A., Delerue-Matos, C. and Rodrigues, F., (2024). Predicting the effects of in-vitro digestion in the bioactivity and bioaccessibility of antioxidant compounds extracted from chestnut shells by supercritical fluid extraction – A metabolomic approach. Food Chemistry, 435, 137581. https://doi.org/10.1016/j.foodchem.2023.137581
  • Pereira, C.G. and Meireles, M.A.A. (2010). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340-372. https://doi.org/10.1007/s11947-009-0263-2
  • Pérez-Jiménez, J. and Saura-Calixto, F. (2006). “Effect of Solvent and Certain Food Constituents on Different Antioxidant Capacity Assays”, Food Research International, 39(7):791-800.
  • Qian, J., Li, Y., Gao, J., He, Z. and Yi, S. (2020). The effects of ultrasonic intensity on physicochemical properties of Chinese fir. Ultrasonic Sonochemistry, 64, 104985. https://doi.org/10.1016/j.ultsonch.2020.104985
  • Rahman, M.M., Byanju, B., Grewell, D. and Buddhi, P.L. (2021). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019. https://doi.org/10.1016/j.ultsonch.2020.105019
  • Saklar-Ayyildiz, S., Pelvan, E. and Karadeniz, B. (2024). Optimization of accelerated solvent extraction, ultrasound assisted and supercritical fluid extraction to obtain carnosol, carnosic acid and rosmarinic acid from rosemary. Sustainable Chemistry and Pharmacy, 37, 101422. https://doi.org/10.1016/j.scp.2023.101422
  • Santos, A.L. (2018). Recuperação de compostos bioativos do resíduo do processamento do café (silverskin): Otimização do processo de extração; caracterização química, capacidade kahveidante e toxicidade dos extratos (Doktora Tezi), Universidade Federal Do Rio Grande Do Sul., Brazil.
  • Setyaningsih, W., Saputro, I.E., Carrera, C.A. and Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288(1), 221-227. https://doi.org/10.1016/j.foodchem.2019.02.107
  • Shahidi, F. and Ambigaipala, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review, Journal of Functional Foods, 18, 820-897. https://doi.org/10.1016/j.jff.2015.06.018
  • Singh, P., Pandey, V. K., Chakraborty, S., Dash, K. K., Singh, R., Shaikh, A. M. and Béla, K. (2023). Ultrasound-assisted extraction of phytochemicals from green coconut shell: Optimization by integrated artificial neural network and particle swarm technique. Heliyon, 9(12), e22438. https://doi.org/10.1016/j.heliyon.2023.e22438
  • Solana, M., Boschiero, I., Dall’Acqua, S. and Bertucco, A. (2015). A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. The Journal of Supercritical Fluids. 100, 201-208. https://doi.org/10.1016/j.supflu.2015.02.014
  • Soliman, T.N. and Shehata, S.H. (2019). Characteristics of fermented camel’s milk fortified with kiwi or avocado fruits, Acta Scientiarum Polonorum, Technologia Alimentaria, 18(1), 53-63. https://doi.org/10.17306/J.AFS.2019.0602
  • Souza, O.A., Ramalhão, V.G.S., Trentin, L.M., Funari, C.S., Carneiro, R.L., Bolzani, V.S. and Rinaldo, D. (2022). Combining natural deep eutectic solvent and microwave irradiation towards the eco-friendly and optimized extraction of bioactive phenolics from Eugenia uniflora L. Sustainable Chemistry and Pharmacy, 26, 100618. https://doi.org/10.1016/j.scp.2022.100618
  • Taglieri, I., Sanmartin, C., Venturi, F., Macaluso, M., Bianchi, A., Sgherri, C., Quartacci, M.F., De Leo, D., Pistelli, L., Palla, F., Flamini, G. and Zinnai, A. (2021). Bread fortified with cooked purple potato flour and Citrus albedo: An evaluation of its compositional and sensorial properties, Foods, 10(5), 942. https://doi.org/10.3390/foods10050942
  • Taşkıran, Z. G., Dündar, A., and Yıldız, H. (2023). Bitkisel Materyallerdeki Biyoaktif Bileşenlerin Ekstraksiyonunda Kullanılan Konvansiyonel ve Yeni Nesil Ekstraksiyon Yöntemleri. Gıda Bilimi ve Mühendisliği Araştırmaları, 2(2), 50-58.
  • Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, Guillermo, Mendiola, J.A. and Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131, 99-105. https://doi.org/10.1016/j.supflu.2017.09.011
  • Wani, K.M. and Uppaluri, R.V.S. (2022). Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Applied Food Research, 2(1), 100096. https://doi.org/10.1016/j.afres.2022.100096
  • Yusoff, I.M., Taher, Z.M., Rahmat, Z. and Chua, L.S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268
  • Zago, E., Tiller, C., De Leneer, G., Nandasiri, R., Delporte, C., Bernaest, K.V. and Shavandi, A. (2022). Sustainable production of low molecular weight phenolic compounds from Belgian Brewers' spent grain. Bioresource Technology Reports, 17, 100964. https://doi.org/10.1016/j.biteb.2022.100964
  • Zieniuk, B., Groborz, K., Wołoszynowska, M., Ratusz, K., Białecka-Florjańczyk, E. and Fabiszewska, A. (2021). Enzymatic Synthesis of Lipophilic Esters of Phenolic Compounds, Evaluation of Their Antioxidant Activity and Effect on the Oxidative Stability of Selected Oils. Biomolecules, 11(2), 314. https://doi.org/10.3390/biom11020314
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Gıda Bilimleri (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Merve Gündüz 0000-0002-7684-4002

Şeniz Karabıyıklı Çiçek 0000-0001-9287-9400

Yayımlanma Tarihi 22 Temmuz 2024
Gönderilme Tarihi 23 Şubat 2024
Kabul Tarihi 8 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Gündüz, M., & Karabıyıklı Çiçek, Ş. (2024). Fenolik bileşiklerin ekstraksiyon yöntemleri ve doğal içerik olarak kullanımı. Gıda Ve Yem Bilimi Teknolojisi Dergisi(32), 37-47. https://doi.org/10.56833/gidaveyem.1512599

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0