Araştırma Makalesi
BibTex RIS Kaynak Göster

Ortaokul Matematik Öğretmenlerinin Beceri Temelli Sorulara Yönelik Değerlendirmelerinin Matematiksel Yetkinlikler Çerçevesinde İncelenmesi

Yıl 2024, Cilt: 12 Sayı: 1, 535 - 583, 29.03.2024
https://doi.org/10.46778/goputeb.1425323

Öz

Bu çalışmanın amacı, ortaokul matematik öğretmenlerinin beceri temelli matematik soruları için geliştirdikleri çözüm yöntemlerinin ve bu çözümler kapsamında yaptıkları değerlendirmelerinin matematiksel yetkinlikler çerçevesinde incelenmesidir. Matematiksel yetkinlik talepleri iletişim, strateji geliştirme, matematikleştirme, temsil, sembolleri, işlemleri ve resmi dili kullanma, akıl yürütme ve argüman geliştirme olarak tanımlanmaktadır. Çalışmaya 13 ortaokul matematik öğretmeni (7 Kadın, 6 Erkek) gönüllü olarak katılmıştır. Çalışmaya katılan öğretmenlere 12 beceri temelli soru sorulmuş, öğretmenlerin çözümleri incelenmiş ve ardından her biri ile yarı yapılandırılmış görüşmeler düzenlenmiştir. Görüşmelerde öğretmenlere yarı-yapılandırılmış sorular sorulmuş ve yaptıkları değerlendirmeler matematiksel yetkinlikler kapsamında incelenmiştir. Çalışmanın sonuçları, öğretmenlerin soruların çözümlerinde farklı çözümler uyguladıkları ve bu çözümler kapsamında matematiksel yetkinliklerin farklı düzeylerde ortaya çıktığını göstermektedir. Çözümlerin belirlenen düzeyleri göz önünde bulundurulduğunda, öğretmenlerin değerlendirmelerine göre iletişim yetkinliği dışında diğer yetkinliklerin belirlenen seviyeleri benzerdir. Stratejiler arasında seçim yapma eyleminin gerçekleştirilmesinde önemli etken olarak çözüm sürecinde sembolleri, işlemleri ve resmi dili kullanma yetkinliği öne çıkmaktadır. Öğretmenlerin matematikleştirme yetkinliğinin talep düzeyine uygun olan modellemeler oluşturabildikleri; fakat değişkenler arasındaki yapısal ilişkileri matematikleştirme yetkinliği dâhilinde değerlendirmedikleri görülmüştür. Temsil yetkinliği kapsamında en dikkat çeken nokta, öğretmenlerin çoğunun görsel bilgileri belirleyip kullanmaları, ancak temsilleri çözüme uygun şekilde manipüle etmekte az sayıda öğretmenin başarılı olmasıdır. Sembolleri, işlemleri ve resmi dili kullanma yetkinliğinde talep düzeyi arttıkça kullanılan işlem sayısı, türü ve prosedürlerin artmasının her durumda doğru olmadığı bu çözüm yöntemleriyle görülmüştür. Öğretmenlerin genellikle çözüm sürecinde kullanılan matematiksel çıkarımları belirleyemedikleri ve çoğunluğunun değerlendirmelerinde daha düşük talep düzeyinde ele aldıkları görülmüştür.

Kaynakça

  • Adleff, A. K., Ross, N., König, J., & Kaiser, G. (2023). Types of mathematical tasks in lower secondary classrooms in Germany: Statistical findings from a latent class analysis based on general mathematical competencies. Educational Studies in Mathematics, 114(3), 371-392. https://doi.org/10.1007/s10649-023-10254-9
  • Ahl, L. M., & Helenius, O. (2023). New demands on the symbols and formalism competency in the digital era. In U. T. Jankvist, & E. Geraniou, (Eds.). Mathematical competencies in the digital era (pp. 159-176). Springer.
  • Altun, M. (2020). Mathematics literacy handbook: Next generation question writing and instructional organization techniques [Matematik okuryazarlığı el kitabı: Yeni nesil soru yazma ve öğretim düzenleme teknikleri]. Alfa Aktüel.
  • Arbaugh, F., & Brown, C. A. (2005). Analyzing mathematical tasks: A catalyst for change? Journal of Mathematics Teacher Education, 8(11), 499-536. https://doi.org/10.1007/s10857-006-6585-3
  • Arı, M. E. (2022). Examining the activity and measurement evaluation questions in the 8th grade mathematics lesson book and comparison with LGS exam questions and getting teacher's opinions [8. sınıf matematik ders kitabındaki etkinlik ve ölçme değerlendirme sorularının incelenerek LGS sınav soruları ile karşılaştırılması ve öğretmen görüşlerinin alınması]. [Unpublished master’s thesis]. Marmara University.
  • Becevic, S. (2023). When teachers construct tests for assessing students' competencies: a taxonomy. Educational Studies in Mathematics, 114(2), 315-336. https://doi.org/10.1007/s10649-023-10233-0
  • Boesen, J. (2006). Assessing mathematical creativity: Comparing national and teacher-made tests, explaining differences and examining impact. [Unpublished doctoral thesis]. Umeå University.
  • Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. (2014). Developing mathematical competence: From the intended to the enacted curriculum. The Journal of Mathematical Behavior, 33(3), 72-87. https://doi.org/10.1016/j.jmathb.2013.10.001
  • Charalambous, C. Y., & Philippou, G. N. (2010). Teachers’ concerns and efficacy beliefs about implementing a mathematics curriculum reform: Integrating two lines of inquiry. Educational studies in Mathematics, 75(1), 1-21. https://doi.org/10.1007/s10649-010-9238-5
  • Creswell, J. W. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage.
  • Çetin, B. Ş. (2019). Investigation of mathematics teachers' views on the 2018 LGS system [Matematik öğretmenlerinin 2018 LGS sistemine ilişkin görüşlerinin incelenmesi]. [Unpublished doctoral thesis]. Sakarya University.
  • Çetin, A., & Ünsal, S. (2019). Social, psychological effects of central examinations on teachers and their reflections on teachers' curriculum implementations [Merkezi sınavların öğretmenler üzerinde sosyal, psikolojik etkisi ve öğretmenlerin öğretim programı uygulamalarına yansıması]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 34(2), 304-323. https://doi.org/10.16986/HUJE.2018040672
  • Erden, B. (2020). Teachers' views related to skill-based questions in Turkish, mathematics and science lessons [Türkçe, matematik ve fen bilimleri dersi beceri temelli sorularına ilişkin öğretmen görüşleri]. Academia Eğitim Araştırmaları Dergisi, 5(2), 81-103.
  • Fakhrunisa, F., & Hasanah, A. (2020). Students’ algebraic thinking: A study of mathematical modelling competencies. Journal of Physics: Conference Series, 1521(3), 32-77. https://doi.org/10.1088/1742-6596/1521/3/032077
  • Harks, B., Klieme, E., Hartig, J., & Leiss, D. (2014). Separating cognitive and content domains in mathematical competence. Educational Assessment, 19(4), 243-266. https://doi.org/10.1080/10627197.2014.964114
  • Højgaard, T. (2021). Teaching for mathematical competence: The different foci of modelling competency and problem solving competency. Quadrante, 30(2), 101-122. https://doi.org/10.48489/quadrante.23691
  • Kertil, M., Dede, H. G., & Ulusoy, E. G. (2021). Skill-based mathematics questions: What do middle school mathematics teachers think about and how do they implement them? Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(1), 151-186. https://doi.org/10.16949/turkbilmat.774651
  • Kilpatrick, J. (2014). Competency frameworks in mathematics education. S. Lerman (Ed.), In Encyclopedia of mathematics education (pp. 85-87). Springer.
  • Küçükgençay, N., Karatepe, F., & Peker, B. (2021). Evaluation of LGS and sample mathematics questions within the learning areas and PISA 2012 framework [LGS ve örnek matematik sorularının öğrenme alanları ve PISA 2012 çerçevesinde değerlendirilmesi]. Milli Eğitim Dergisi, 50(232), 177-198. https://doi.org/10.37669/milliegitim.741871
  • MoNE. (2018). Primary school mathematics curriculum (Grades 1, 2, 3, 4, 5, 6, 7 and 8) [İlköğretim matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar]. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı.
  • MoNE. (2022). LGS study workbook: Previous LGS exam questions and Ministry of National Education sample questions [LGS Çalışma Kitabı: LGS’de çıkmış sorular ve Milli Eğitim Bakanlığı örnek soruları]. http://odsgm.meb.gov.tr/www/e-kitaplar/icerik/605
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd Mediterranean conference of mathematical education (pp. 115–124). Hellenic Mathematical Society.
  • Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy (pp. 35–56). Springer.
  • Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on: Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48(6), 611-632. https://doi.org/10.1007/s11858-016-0799-3
  • Niss, M. & Højgaard, T. (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde University Press.
  • Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(6), 9-28. https://doi.org/10.1007/s10649-019-09903-9
  • OECD (2019). PISA 2018 Assessment and analytical framework. OECD Publishing.
  • Özgeldi, M., & Aydın, U. (2021). Identifying competency demands in calculus textbook examples: The case of integrals. International Journal of Science and Mathematics Education, 19(1), 171-191. https://doi.org/10.1007/s10763-019-10046-9
  • Pettersen, A. (2019). Towards competency-oriented mathematics education: An investigation of task demands and teachers' knowledge of task demands from a competency perspective [Unpublished doctoral thesis]. Oslo University.
  • Pettersen, A., & Braeken, J. (2019). Mathematical competency demands of assessment items: A search for empirical evidence. International Journal of Science and Mathematics Education, 17(2), 405-425. https://doi.org/10.1007/s10763-017-9870-y
  • Pettersen, A., & Nortvedt, G. A. (2018). Identifying competency demands in mathematical tasks: Recognising what matters. International Journal of Science and Mathematics Education, 16(6), 949-965. https://doi.org/10.1007/s10763-017-9807-5
  • Shimizu, Y., Kaur, B., Huang, R., & Clarke, D. (2010). The role of mathematical task in different cultures. Y. Shimizu, B. Kaur & R. Huang (Eds.), In Mathematical tasks in classrooms around the world (pp. 1-15). Sense Publishers.
  • Şen, E. Ö., & Ünal, D. P. (2021). Evaluation of the mathematics course curriculum according to the Eisner Educational Criticism Model [Matematik dersi öğretim programının Eisner Eğitsel Eleştiri Modeline göre değerlendirilmesi]. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(2), 605-632. https://doi.org/10.33711/yyuefd.1029100
  • Turner, R. (2012, April). Some drivers of test item difficulty in mathematics [Paper presentation]. The Annual Meeting of the American Educational Research Association (AERA), Vancouver, Canada. https://research.acer.edu.au/pisa/4
  • Turner, R., & Adams, R. J. (2012). Some drivers of test item difficulty in mathematics: An analysis of the competency rubric. American Educational Research Association (AERA).
  • Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey, & R. Turner (Eds.), Assessing mathematical literacy (pp. 85-115). Springer.
  • Yüceer, E. G. (2023). Examination of LGS mathematics items according to mathematics curriculum and TIMMS framework [Lgs matematik sorularının matematik öğretim programına ve TIMSS çerçevesine göre incelenmesi]. [Unpublished doctoral thesis]. Necmettin Erbakan University.

Analysis of Middle School Mathematics Teachers' Evaluations of Skill-Based Questions within the Framework of Mathematical Competencies

Yıl 2024, Cilt: 12 Sayı: 1, 535 - 583, 29.03.2024
https://doi.org/10.46778/goputeb.1425323

Öz

The purpose of this study is to examine the solution methods developed by middle school mathematics teachers for skill-based mathematics questions and their evaluations within the framework of mathematical competencies. Mathematical competency demands are defined as communication, devising strategy, mathematizing, representation, using symbols, operations and formal language, and reasoning and argument. Thirteen middle school mathematics teachers (7 female, 6 male) participated voluntarily in the study. They were asked to solve twelve skill-based questions, followed by the examination of their solutions, and then semi-structured interviews were conducted with each of them. During the interviews, the teachers were presented with semi-structured questions, and their evaluations were examined within the scope of mathematical competencies. The study results indicated that teachers apply different solutions in solving the questions and that mathematical competencies emerge at different levels within these solutions. Considering the determined levels of solutions, other competencies, except for communication competency, appeared to be at similar levels based on teachers' evaluations. The competency of using symbols, operations, and formal language stood out as an essential factor in selecting among strategies. It was found that teachers could create appropriate models according to the level of demand for mathematizing competency, yet they did not evaluate the structural relationships between variables within the scope of mathematizing competency. Regarding representation competency, the most striking point was that the majority of teachers identified and used visual information. However, only a few teachers were successful in manipulating representations in a solution-appropriate manner. It was also discovered that as the demand level increases in using symbols, operations, and formal language competency, the increase in the number, type, and procedures of operations used is not always correct with these solution methods. Teachers could not identify the mathematical deductions utilized in the solution process. The majority addressed them at a lower demand level in their evaluations.

Kaynakça

  • Adleff, A. K., Ross, N., König, J., & Kaiser, G. (2023). Types of mathematical tasks in lower secondary classrooms in Germany: Statistical findings from a latent class analysis based on general mathematical competencies. Educational Studies in Mathematics, 114(3), 371-392. https://doi.org/10.1007/s10649-023-10254-9
  • Ahl, L. M., & Helenius, O. (2023). New demands on the symbols and formalism competency in the digital era. In U. T. Jankvist, & E. Geraniou, (Eds.). Mathematical competencies in the digital era (pp. 159-176). Springer.
  • Altun, M. (2020). Mathematics literacy handbook: Next generation question writing and instructional organization techniques [Matematik okuryazarlığı el kitabı: Yeni nesil soru yazma ve öğretim düzenleme teknikleri]. Alfa Aktüel.
  • Arbaugh, F., & Brown, C. A. (2005). Analyzing mathematical tasks: A catalyst for change? Journal of Mathematics Teacher Education, 8(11), 499-536. https://doi.org/10.1007/s10857-006-6585-3
  • Arı, M. E. (2022). Examining the activity and measurement evaluation questions in the 8th grade mathematics lesson book and comparison with LGS exam questions and getting teacher's opinions [8. sınıf matematik ders kitabındaki etkinlik ve ölçme değerlendirme sorularının incelenerek LGS sınav soruları ile karşılaştırılması ve öğretmen görüşlerinin alınması]. [Unpublished master’s thesis]. Marmara University.
  • Becevic, S. (2023). When teachers construct tests for assessing students' competencies: a taxonomy. Educational Studies in Mathematics, 114(2), 315-336. https://doi.org/10.1007/s10649-023-10233-0
  • Boesen, J. (2006). Assessing mathematical creativity: Comparing national and teacher-made tests, explaining differences and examining impact. [Unpublished doctoral thesis]. Umeå University.
  • Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. (2014). Developing mathematical competence: From the intended to the enacted curriculum. The Journal of Mathematical Behavior, 33(3), 72-87. https://doi.org/10.1016/j.jmathb.2013.10.001
  • Charalambous, C. Y., & Philippou, G. N. (2010). Teachers’ concerns and efficacy beliefs about implementing a mathematics curriculum reform: Integrating two lines of inquiry. Educational studies in Mathematics, 75(1), 1-21. https://doi.org/10.1007/s10649-010-9238-5
  • Creswell, J. W. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage.
  • Çetin, B. Ş. (2019). Investigation of mathematics teachers' views on the 2018 LGS system [Matematik öğretmenlerinin 2018 LGS sistemine ilişkin görüşlerinin incelenmesi]. [Unpublished doctoral thesis]. Sakarya University.
  • Çetin, A., & Ünsal, S. (2019). Social, psychological effects of central examinations on teachers and their reflections on teachers' curriculum implementations [Merkezi sınavların öğretmenler üzerinde sosyal, psikolojik etkisi ve öğretmenlerin öğretim programı uygulamalarına yansıması]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 34(2), 304-323. https://doi.org/10.16986/HUJE.2018040672
  • Erden, B. (2020). Teachers' views related to skill-based questions in Turkish, mathematics and science lessons [Türkçe, matematik ve fen bilimleri dersi beceri temelli sorularına ilişkin öğretmen görüşleri]. Academia Eğitim Araştırmaları Dergisi, 5(2), 81-103.
  • Fakhrunisa, F., & Hasanah, A. (2020). Students’ algebraic thinking: A study of mathematical modelling competencies. Journal of Physics: Conference Series, 1521(3), 32-77. https://doi.org/10.1088/1742-6596/1521/3/032077
  • Harks, B., Klieme, E., Hartig, J., & Leiss, D. (2014). Separating cognitive and content domains in mathematical competence. Educational Assessment, 19(4), 243-266. https://doi.org/10.1080/10627197.2014.964114
  • Højgaard, T. (2021). Teaching for mathematical competence: The different foci of modelling competency and problem solving competency. Quadrante, 30(2), 101-122. https://doi.org/10.48489/quadrante.23691
  • Kertil, M., Dede, H. G., & Ulusoy, E. G. (2021). Skill-based mathematics questions: What do middle school mathematics teachers think about and how do they implement them? Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(1), 151-186. https://doi.org/10.16949/turkbilmat.774651
  • Kilpatrick, J. (2014). Competency frameworks in mathematics education. S. Lerman (Ed.), In Encyclopedia of mathematics education (pp. 85-87). Springer.
  • Küçükgençay, N., Karatepe, F., & Peker, B. (2021). Evaluation of LGS and sample mathematics questions within the learning areas and PISA 2012 framework [LGS ve örnek matematik sorularının öğrenme alanları ve PISA 2012 çerçevesinde değerlendirilmesi]. Milli Eğitim Dergisi, 50(232), 177-198. https://doi.org/10.37669/milliegitim.741871
  • MoNE. (2018). Primary school mathematics curriculum (Grades 1, 2, 3, 4, 5, 6, 7 and 8) [İlköğretim matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar]. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı.
  • MoNE. (2022). LGS study workbook: Previous LGS exam questions and Ministry of National Education sample questions [LGS Çalışma Kitabı: LGS’de çıkmış sorular ve Milli Eğitim Bakanlığı örnek soruları]. http://odsgm.meb.gov.tr/www/e-kitaplar/icerik/605
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd Mediterranean conference of mathematical education (pp. 115–124). Hellenic Mathematical Society.
  • Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy (pp. 35–56). Springer.
  • Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on: Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48(6), 611-632. https://doi.org/10.1007/s11858-016-0799-3
  • Niss, M. & Højgaard, T. (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde University Press.
  • Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(6), 9-28. https://doi.org/10.1007/s10649-019-09903-9
  • OECD (2019). PISA 2018 Assessment and analytical framework. OECD Publishing.
  • Özgeldi, M., & Aydın, U. (2021). Identifying competency demands in calculus textbook examples: The case of integrals. International Journal of Science and Mathematics Education, 19(1), 171-191. https://doi.org/10.1007/s10763-019-10046-9
  • Pettersen, A. (2019). Towards competency-oriented mathematics education: An investigation of task demands and teachers' knowledge of task demands from a competency perspective [Unpublished doctoral thesis]. Oslo University.
  • Pettersen, A., & Braeken, J. (2019). Mathematical competency demands of assessment items: A search for empirical evidence. International Journal of Science and Mathematics Education, 17(2), 405-425. https://doi.org/10.1007/s10763-017-9870-y
  • Pettersen, A., & Nortvedt, G. A. (2018). Identifying competency demands in mathematical tasks: Recognising what matters. International Journal of Science and Mathematics Education, 16(6), 949-965. https://doi.org/10.1007/s10763-017-9807-5
  • Shimizu, Y., Kaur, B., Huang, R., & Clarke, D. (2010). The role of mathematical task in different cultures. Y. Shimizu, B. Kaur & R. Huang (Eds.), In Mathematical tasks in classrooms around the world (pp. 1-15). Sense Publishers.
  • Şen, E. Ö., & Ünal, D. P. (2021). Evaluation of the mathematics course curriculum according to the Eisner Educational Criticism Model [Matematik dersi öğretim programının Eisner Eğitsel Eleştiri Modeline göre değerlendirilmesi]. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(2), 605-632. https://doi.org/10.33711/yyuefd.1029100
  • Turner, R. (2012, April). Some drivers of test item difficulty in mathematics [Paper presentation]. The Annual Meeting of the American Educational Research Association (AERA), Vancouver, Canada. https://research.acer.edu.au/pisa/4
  • Turner, R., & Adams, R. J. (2012). Some drivers of test item difficulty in mathematics: An analysis of the competency rubric. American Educational Research Association (AERA).
  • Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey, & R. Turner (Eds.), Assessing mathematical literacy (pp. 85-115). Springer.
  • Yüceer, E. G. (2023). Examination of LGS mathematics items according to mathematics curriculum and TIMMS framework [Lgs matematik sorularının matematik öğretim programına ve TIMSS çerçevesine göre incelenmesi]. [Unpublished doctoral thesis]. Necmettin Erbakan University.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik Eğitimi
Bölüm Makaleler
Yazarlar

Çiğdem Bozkuş Bu kişi benim 0000-0002-5483-0064

Meriç Özgeldi 0000-0002-4623-9397

Yayımlanma Tarihi 29 Mart 2024
Gönderilme Tarihi 24 Ocak 2024
Kabul Tarihi 26 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Bozkuş, Ç., & Özgeldi, M. (2024). Analysis of Middle School Mathematics Teachers’ Evaluations of Skill-Based Questions within the Framework of Mathematical Competencies. International Journal of Turkish Education Sciences, 12(1), 535-583. https://doi.org/10.46778/goputeb.1425323