Derleme
BibTex RIS Kaynak Göster

HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ

Yıl 2022, Cilt: 7 Sayı: 1, 154 - 163, 21.03.2022
https://doi.org/10.52881/gsbdergi.958923

Öz

Obezite küresel düzeyde prevalansı giderek artan önemli bir halk sağlığı sorunudur. Son dönemlerde hedonik açlığın obez bireylerde yüksek olmasından dolayı hedonik açlık obezite için önemli bir olgu haline gelmiştir. Hedonik açlık fiziksel açlığın yokluğunda haz odaklı beslenme olarak ifade edilmektedir. Hedonik açlığı yüksek bireylerde fazla miktarda yağ, şeker ve/veya tuz içeriğine sahip olan besinlere yönelim bulunmaktadır. Ekonomik kalkınma, modernleşme ve kentleşme ile birlikte obezojenik çevre bu besinlere ulaşımı kolaylaştırmıştır ve vücut ağırlığı artışına sebep olarak risk faktörü haline getirmiştir. Bu besin içeriklerinin hedonik açlığı tetikleme mekanizmalarının bilinmesi ve hedonik açlığı azaltacak önlemlerin alınması gelecekte obezitenin önlenebilmesi açısından son derece önemlidir. Bu derlemede diyetteki makro besin öğesi alımlarının hedonik sistem üzerine etkisi ve hedonik açlığın değerlendirilmesine yer verilmiştir.

Kaynakça

  • Lowe MR, Butryn ML. Hedonic hunger: a new dimension of appetite? Physiol behav. 2007; 91(4):432-9.
  • Yang D, Liu T, Williams KW. Motivation to Eat—AgRP Neurons and Homeostatic Need. Cell Metab. 2015; 22(1):62-3.
  • Cushing CC, Benoit SC, Peugh JL, Reiter-Purtill J, Inge TH, Zeller MH. Longitudinal trends in hedonic hunger after Roux-en-Y gastric bypass in adolescents. Surg Obes Relat Dis. 2014; 10(1):125-30.
  • Çolak H, Aktaç Ş. Ağırlık Yönetimine Yeni Bir Yaklaşım: Yeme Farkındalığı. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi. 2019; 3(3):212-22.
  • Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. The Journal of nutrition. 2009;139(3):629-32.
  • Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology. 2017; 124:38-51.
  • Berthoud H-R, Münzberg H, Morrison CD. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152(7):1728-38.
  • Boggiano MM, Wenger LE, Turan B, Tatum MM, Sylvester MD, Morgan PR, et al. Real-time sampling of reasons for hedonic food consumption: further validation of the Palatable Eating Motives Scale. Front Psychol. 2015; 6:744.
  • Weltens N, Zhao D, Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol Motil. 2014; 26(3):303-15.
  • Tulloch AJ, Murray S, Vaicekonyte R, Avena NM. Neural responses to macronutrients: hedonic and homeostatic mechanisms. Gastroenterology. 2015; 148(6):1205-18.
  • Berthoud H-R. The neurobiology of food intake in an obesogenic environment. Proc Nutr Soc. 2012; 71(4):478-87.
  • Sohn J-W. Network of hypothalamic neurons that control appetite. BMB Rep. 2015; 48(4):229.
  • Akbulut G(editör). Endokrin ve Kardiyometabolik Hastalıklarda Tıbbi Beslenme Tedavisi, 1.baskı, Ankara Nobel Tıp Kitapevleri, Ankara, 2019. 8 p.
  • Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev. 2005; 85(4):1131-58.
  • Berthoud H-R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011; 21(6):888-96.
  • Lee PC, Dixon JB. Food for thought: reward mechanisms and hedonic overeating in obesity. Curr Obes Rep. 2017; 6(4):353-61.
  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu Z-W, Gao X-B, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. neuron. 2006; 51(6):801-10.
  • Bourdy R, Sánchez-Catalán M-J, Kaufling J, Balcita-Pedicino JJ, Freund-Mercier M-J, Veinante P, et al. Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology. 2014; 39(12):2788-98.
  • Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. Brain responses to high-protein diets. Adv Nutr. 2012; 3(3):322-9.
  • Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013; 14(4):387-407.
  • Naleid AM, Grace MK, Cummings DE, Levine AS. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005; 26(11):2274-9.
  • Hajnal A, Norgren R. Accumbens dopamine mechanisms in sucrose intake. Brain res. 2001; 904(1):76-84.
  • Rorabaugh JM, Stratford JM, Zahniser NR. Differences in bingeing behavior and cocaine reward following intermittent access to sucrose, glucose or fructose solutions. Neuroscience. 2015; 301:213-20.
  • Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008; 32(1):20-39.
  • Shearrer GE, Stice E, Burger KS. Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. Am J Clin Nutr. 2018; 107(6):859-66.
  • Stice E, Burger KS, Yokum S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am J Clin Nutr. 2013; 98(6):1377-84.
  • Luo S, Monterosso JR, Sarpelleh K, Page KA. Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci U S A. 2015; 112(20):6509-14.
  • Leidy HJ, Lepping RJ, Savage CR, Harris CT. Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast‐skipping teens: a pilot fMRI study. Obesity. 2011; 19(10):2019-25.
  • Griffioen-Roose S, Mars M, Siebelink E, Finlayson G, Tomé D, de Graaf C. Protein status elicits compensatory changes in food intake and food preferences. Am J Clin Nutr. 2012; 95(1):32-8.
  • Griffioen-Roose S, Smeets PA, van den Heuvel E, Boesveldt S, Finlayson G, de Graaf C. Human protein status modulates brain reward responses to food cues. Am J Clin Nutr. 2014; 100(1):113-22.
  • Davidenko O, Darcel N, Fromentin G, Tome D. Control of protein and energy intake-brain mechanisms. Eur J Clin Nutr. 2013; 67(5):455-61.
  • Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: Association with diet and obesity. Prog Lipid Res. 2016; 63:41-9.
  • Rada P, Avena NM, Barson JR, Hoebel BG, Leibowitz SF. A high-fat meal, or intraperitoneal administration of a fat emulsion, increases extracellular dopamine in the nucleus accumbens. Brain sciences. 2012; 2(2):242-53.
  • Rivera HM, Kievit P, Kirigiti MA, Bauman LA, Baquero K, Blundell P, et al. Maternal high‐fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring. Obesity. 2015; 23(11):2157-64.
  • Hopkins M, Gibbons C, Caudwell P, Blundell JE, Finlayson G. Differing effects of high-fat or high-carbohydrate meals on food hedonics in overweight and obese individuals. Br J Nutr. 2016; 115(10):1875-84.
  • DiFeliceantonio AG, Coppin G, Rigoux L, Thanarajah SE, Dagher A, Tittgemeyer M, et al. Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab. 2018; 28(1):33-44. e3.
  • Cappelleri JC, Bushmakin AG, Gerber RA, Leidy NK, Sexton CC, Karlsson J, et al. Evaluating the Power of Food Scale in obese subjects and a general sample of individuals: development and measurement properties. Int J Obes (Lond). 2009; 33(8):913-22.
  • Feig EH, Piers AD, Kral TV, Lowe MR. Eating in the absence of hunger is related to loss-of-control eating, hedonic hunger, and short-term weight gain in normal-weight women. Appetite. 2018; 123:317-24.
  • Nansel TR, Lipsky LM, Eisenberg MH, Haynie DL, Liu D, Simons-Morton B. Greater food reward sensitivity is associated with more frequent intake of discretionary foods in a nationally representative sample of young adults. Front Nutr. 2016; 3:33.
  • Schüz B, Schüz N, Ferguson SG. It’s the power of food: individual differences in food cue responsiveness and snacking in everyday life. Int J Behav Nutr Phys Act. 2015; 12(1):1-8.
  • Manasse SM, Espel HM, Forman EM, Ruocco AC, Juarascio AS, Butryn ML, et al. The independent and interacting effects of hedonic hunger and executive function on binge eating. Appetite. 2015; 89:16-21.
  • Lowe MR, Arigo D, Butryn ML, Gilbert JR, Sarwer D, Stice E. Hedonic hunger prospectively predicts onset and maintenance of loss of control eating among college women. Health Psychol. 2016; 35(3):238.
  • Ullrich J, Ernst B, Wilms B, Thurnheer M, Hallschmid M, Schultes B. The hedonic drive to consume palatable foods appears to be lower in gastric band carriers than in severely obese patients who have not undergone a bariatric surgery. Obes Surg. 2013; 23(4):474-9.
  • Schultes B, Ernst B, Wilms B, Thurnheer M, Hallschmid M. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am J Clin Nutr. 2010; 92(2):277-83.

HEDONIC HUNGER AND ITS RELATIONSHIP WITH MACRO NUTRIENTS

Yıl 2022, Cilt: 7 Sayı: 1, 154 - 163, 21.03.2022
https://doi.org/10.52881/gsbdergi.958923

Öz

Obesity is a major public health problem, with increasing prevalence at a global level. Hedonic hunger has become an important phenomenon for obesity due to the high level of hedonic hunger in obese individuals in recent years. Hedonic hunger is expressed as pleasure-oriented nutrition in the absence of physical hunger. In individuals with high hedonic hunger, there is an tend to foods that have a large amount of fat, sugar and/or salt content. With economic development, modernization and urbanization, the obesogenic environment has facilitated access to these foods and made it a risk factor by causing body weight gain. Knowing the mechanisms of these nutrient contents to trigger hedonic hunger and taking measures to reduce hedonic hunger is extremely important for preventing obesity in the future. In this review, the effect of macronutrient intake in the diet on the hedonic system and the evaluation of hedonic hunger are included.

Kaynakça

  • Lowe MR, Butryn ML. Hedonic hunger: a new dimension of appetite? Physiol behav. 2007; 91(4):432-9.
  • Yang D, Liu T, Williams KW. Motivation to Eat—AgRP Neurons and Homeostatic Need. Cell Metab. 2015; 22(1):62-3.
  • Cushing CC, Benoit SC, Peugh JL, Reiter-Purtill J, Inge TH, Zeller MH. Longitudinal trends in hedonic hunger after Roux-en-Y gastric bypass in adolescents. Surg Obes Relat Dis. 2014; 10(1):125-30.
  • Çolak H, Aktaç Ş. Ağırlık Yönetimine Yeni Bir Yaklaşım: Yeme Farkındalığı. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi. 2019; 3(3):212-22.
  • Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. The Journal of nutrition. 2009;139(3):629-32.
  • Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology. 2017; 124:38-51.
  • Berthoud H-R, Münzberg H, Morrison CD. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152(7):1728-38.
  • Boggiano MM, Wenger LE, Turan B, Tatum MM, Sylvester MD, Morgan PR, et al. Real-time sampling of reasons for hedonic food consumption: further validation of the Palatable Eating Motives Scale. Front Psychol. 2015; 6:744.
  • Weltens N, Zhao D, Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol Motil. 2014; 26(3):303-15.
  • Tulloch AJ, Murray S, Vaicekonyte R, Avena NM. Neural responses to macronutrients: hedonic and homeostatic mechanisms. Gastroenterology. 2015; 148(6):1205-18.
  • Berthoud H-R. The neurobiology of food intake in an obesogenic environment. Proc Nutr Soc. 2012; 71(4):478-87.
  • Sohn J-W. Network of hypothalamic neurons that control appetite. BMB Rep. 2015; 48(4):229.
  • Akbulut G(editör). Endokrin ve Kardiyometabolik Hastalıklarda Tıbbi Beslenme Tedavisi, 1.baskı, Ankara Nobel Tıp Kitapevleri, Ankara, 2019. 8 p.
  • Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev. 2005; 85(4):1131-58.
  • Berthoud H-R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011; 21(6):888-96.
  • Lee PC, Dixon JB. Food for thought: reward mechanisms and hedonic overeating in obesity. Curr Obes Rep. 2017; 6(4):353-61.
  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu Z-W, Gao X-B, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. neuron. 2006; 51(6):801-10.
  • Bourdy R, Sánchez-Catalán M-J, Kaufling J, Balcita-Pedicino JJ, Freund-Mercier M-J, Veinante P, et al. Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology. 2014; 39(12):2788-98.
  • Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. Brain responses to high-protein diets. Adv Nutr. 2012; 3(3):322-9.
  • Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013; 14(4):387-407.
  • Naleid AM, Grace MK, Cummings DE, Levine AS. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005; 26(11):2274-9.
  • Hajnal A, Norgren R. Accumbens dopamine mechanisms in sucrose intake. Brain res. 2001; 904(1):76-84.
  • Rorabaugh JM, Stratford JM, Zahniser NR. Differences in bingeing behavior and cocaine reward following intermittent access to sucrose, glucose or fructose solutions. Neuroscience. 2015; 301:213-20.
  • Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008; 32(1):20-39.
  • Shearrer GE, Stice E, Burger KS. Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. Am J Clin Nutr. 2018; 107(6):859-66.
  • Stice E, Burger KS, Yokum S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am J Clin Nutr. 2013; 98(6):1377-84.
  • Luo S, Monterosso JR, Sarpelleh K, Page KA. Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci U S A. 2015; 112(20):6509-14.
  • Leidy HJ, Lepping RJ, Savage CR, Harris CT. Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast‐skipping teens: a pilot fMRI study. Obesity. 2011; 19(10):2019-25.
  • Griffioen-Roose S, Mars M, Siebelink E, Finlayson G, Tomé D, de Graaf C. Protein status elicits compensatory changes in food intake and food preferences. Am J Clin Nutr. 2012; 95(1):32-8.
  • Griffioen-Roose S, Smeets PA, van den Heuvel E, Boesveldt S, Finlayson G, de Graaf C. Human protein status modulates brain reward responses to food cues. Am J Clin Nutr. 2014; 100(1):113-22.
  • Davidenko O, Darcel N, Fromentin G, Tome D. Control of protein and energy intake-brain mechanisms. Eur J Clin Nutr. 2013; 67(5):455-61.
  • Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: Association with diet and obesity. Prog Lipid Res. 2016; 63:41-9.
  • Rada P, Avena NM, Barson JR, Hoebel BG, Leibowitz SF. A high-fat meal, or intraperitoneal administration of a fat emulsion, increases extracellular dopamine in the nucleus accumbens. Brain sciences. 2012; 2(2):242-53.
  • Rivera HM, Kievit P, Kirigiti MA, Bauman LA, Baquero K, Blundell P, et al. Maternal high‐fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring. Obesity. 2015; 23(11):2157-64.
  • Hopkins M, Gibbons C, Caudwell P, Blundell JE, Finlayson G. Differing effects of high-fat or high-carbohydrate meals on food hedonics in overweight and obese individuals. Br J Nutr. 2016; 115(10):1875-84.
  • DiFeliceantonio AG, Coppin G, Rigoux L, Thanarajah SE, Dagher A, Tittgemeyer M, et al. Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab. 2018; 28(1):33-44. e3.
  • Cappelleri JC, Bushmakin AG, Gerber RA, Leidy NK, Sexton CC, Karlsson J, et al. Evaluating the Power of Food Scale in obese subjects and a general sample of individuals: development and measurement properties. Int J Obes (Lond). 2009; 33(8):913-22.
  • Feig EH, Piers AD, Kral TV, Lowe MR. Eating in the absence of hunger is related to loss-of-control eating, hedonic hunger, and short-term weight gain in normal-weight women. Appetite. 2018; 123:317-24.
  • Nansel TR, Lipsky LM, Eisenberg MH, Haynie DL, Liu D, Simons-Morton B. Greater food reward sensitivity is associated with more frequent intake of discretionary foods in a nationally representative sample of young adults. Front Nutr. 2016; 3:33.
  • Schüz B, Schüz N, Ferguson SG. It’s the power of food: individual differences in food cue responsiveness and snacking in everyday life. Int J Behav Nutr Phys Act. 2015; 12(1):1-8.
  • Manasse SM, Espel HM, Forman EM, Ruocco AC, Juarascio AS, Butryn ML, et al. The independent and interacting effects of hedonic hunger and executive function on binge eating. Appetite. 2015; 89:16-21.
  • Lowe MR, Arigo D, Butryn ML, Gilbert JR, Sarwer D, Stice E. Hedonic hunger prospectively predicts onset and maintenance of loss of control eating among college women. Health Psychol. 2016; 35(3):238.
  • Ullrich J, Ernst B, Wilms B, Thurnheer M, Hallschmid M, Schultes B. The hedonic drive to consume palatable foods appears to be lower in gastric band carriers than in severely obese patients who have not undergone a bariatric surgery. Obes Surg. 2013; 23(4):474-9.
  • Schultes B, Ernst B, Wilms B, Thurnheer M, Hallschmid M. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am J Clin Nutr. 2010; 92(2):277-83.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Gökçe Sueda Aydoğdu 0000-0001-6833-4224

Eda Köksal 0000-0002-7930-9910

Erken Görünüm Tarihi 18 Mart 2022
Yayımlanma Tarihi 21 Mart 2022
Gönderilme Tarihi 6 Temmuz 2021
Kabul Tarihi 26 Temmuz 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 1

Kaynak Göster

APA Aydoğdu, G. S., & Köksal, E. (2022). HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ. Gazi Sağlık Bilimleri Dergisi, 7(1), 154-163. https://doi.org/10.52881/gsbdergi.958923
AMA Aydoğdu GS, Köksal E. HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ. Gazi Sağlık Bil. Mart 2022;7(1):154-163. doi:10.52881/gsbdergi.958923
Chicago Aydoğdu, Gökçe Sueda, ve Eda Köksal. “HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ”. Gazi Sağlık Bilimleri Dergisi 7, sy. 1 (Mart 2022): 154-63. https://doi.org/10.52881/gsbdergi.958923.
EndNote Aydoğdu GS, Köksal E (01 Mart 2022) HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ. Gazi Sağlık Bilimleri Dergisi 7 1 154–163.
IEEE G. S. Aydoğdu ve E. Köksal, “HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ”, Gazi Sağlık Bil, c. 7, sy. 1, ss. 154–163, 2022, doi: 10.52881/gsbdergi.958923.
ISNAD Aydoğdu, Gökçe Sueda - Köksal, Eda. “HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ”. Gazi Sağlık Bilimleri Dergisi 7/1 (Mart 2022), 154-163. https://doi.org/10.52881/gsbdergi.958923.
JAMA Aydoğdu GS, Köksal E. HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ. Gazi Sağlık Bil. 2022;7:154–163.
MLA Aydoğdu, Gökçe Sueda ve Eda Köksal. “HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ”. Gazi Sağlık Bilimleri Dergisi, c. 7, sy. 1, 2022, ss. 154-63, doi:10.52881/gsbdergi.958923.
Vancouver Aydoğdu GS, Köksal E. HEDONİK AÇLIK VE MAKRO BESİN ÖĞELERİ İLE İLİŞKİSİ. Gazi Sağlık Bil. 2022;7(1):154-63.