Derleme
BibTex RIS Kaynak Göster

Biyosensörler

Yıl 2020, , 51 - 60, 30.12.2020
https://doi.org/10.5281/zenodo.4317958

Öz

Biyosensörler, analitlerin derişimi ile orantılı ölçülebilir sinyal elde edebilmek amacıyla bir biyolojik
algılayıcı ve fiziksel dönüştürücü ile birleştirilmiş cihazlardır. Biyosensörler yüksek duyarlıklı, hızlı cevap
süresine sahip, basit ve ucuz cihazlardır. Bu nedenle biyosensörler teşhis ve tedavide birden çok kullanım
alanına sahiptir. Biyosensörlerin çeşitli uygulamaları arasında gıda teknolojisi, biyoteknoloji, genetik
mühendisliği, nanoteknoloji, kanser dâhil tıbbi teşhisler, enzim çalışmaları, antikor çalışmaları ve DNA
çalışmaları bulunmaktadır. Biyosensörlerin tasarımında enzimler, nükleik asitler gibi biyomateryaller
kullanılabildiği gibi doğrudan doku veya mikroorganizmaların da kullanılması mümkündür. Biyosensörlerin
tasarımında farklı dönüştürücü türleri kullanılmakla birlikte yaygın olarak elektrokimyasal dönüştürücüler
kullanılmaktadır. Biyosensörlerin kablosuz sistemlerle birleştirilerek uzaktan, hızlı, yüksek doğrulukta
verilerin elde edilmesi de sağlanmaktadır.

Kaynakça

  • [1] Kissinger, P. T. (2005). Biosensors—A perspective. Biosensors and Bioelectronics, 20(12), 2512-2516.
  • [2] Burçin, B. O. Z., Paylan, İ. C., Kızmaz, M. Z. ve Erkan, S. (2017). Biyosensörler ve tarım alanında kullanımı. Tarım Makinaları Bilimi Dergisi, 13(3), 141-148.
  • [3] Luong, J. H. T., Mulchandani, A., and Guilbault, G. G. (1988). Developments and applications of biosensors. Trends in Biotechnology, 6(12), 310-316.
  • [4] Newman, J. D. and Turner, A. P. (2005). Home blood glucose biosensors: a commercial perspective. Biosensors and bioelectronics, 20(12), 2435-2453.
  • [5] Arslan, H., Özdemir, M., Zengin, H., and Zengin, G. (2012). Glucose biosensing at carbon paste electrodes containing polyaniline-silicon dioxide composite. International Journal of Electrochemical Science, 7(10), 10205- 10214.
  • [6] Donmez, S., Arslan, F., Sarı, N., Hasanoğlu Özkan, E., and Arslan, H. (2017). Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere‐attached l‐glycine. Biotechnology and applied biochemistry, 64(5), 745-753.
  • [7] Arslan, F., Ustabaş, S., and Arslan, H. (2011). An amperometric biosensor for glucose determination prepared from glucose oxidase immobilized in polyaniline-polyvinylsulfonate film. Sensors, 11(8), 8152-8163.
  • [8] Dönmez, S., Arslan, F., Sarı, N., Yetim, N. K., and Arslan, H. (2014). Preparation of carbon paste electrodes including poly (styrene) attached glycine–Pt (IV) for amperometric detection of glucose. Biosensors and Bioelectronics, 54, 146-150.
  • [9] Rocchitta, G., Spanu, A., Babudieri, S., Latte, G., Madeddu, G., Galleri, G., and Manetti, R. (2016). Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors, 16(6), 780.
  • [10] Baskin, R., Koyuncu, E., Arslan, H., and Arslan, F. (2020). Development of choline biosensor using toluidine blue O as mediator. Preparative Biochemistry & Biotechnology, 50(3), 240-245.
  • [11] Çolak, Ö. and Arslan, F. (2015). Amperometric biosensing of ethanol based on integration of alcohol dehydrogenase with a Pt/PPy--PVS/MB electrode. Turkish Journal of Chemistry, 39(1), 84-95.
  • [12] Arslan, H., Ünal, K., Koyuncu, E. A., Yildirim, E., and Arslan, F. (2020). Development of a novel phenylalanine biosensor for diagnosis of phenylketonuria. IEEE Sensors Journal, 20(20), 12127-12133.
  • [13] Su, L., Jia, W., Hou, C., and Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26(5), 1788-1799.
  • [14] Nikhil, B., Pawan, J., Nello, F., and Pedro, E. (2016). Introduction to biosensors. Essays in Biochemistry, 60(1), 1-8.
  • [15] Shukla, S. K., Govender, P. P., and Tiwari, A. (2016). Polymeric micellar structures for biosensor technology. Advances in Biomembranes and Lipid Self-Assembly, Vol. 24, pp. 143-161. Academic Press.
  • [16] Clark Jr, L. C., and Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of The New York Academy of Sciences, 102(1), 29-45.
  • [17] Özdemir, M. and Arslan, H. (2014). Choline-sensing carbon paste electrode containing polyaniline (pani)–silicon dioxide composite-modified choline oxidase. Artificial Cells, Nanomedicine, and Biotechnology, 42(1), 27-31.
  • [18] Nguyen, H. H., Lee, S. H., Lee, U. J., Fermin, C. D., and Kim, M. (2019). Immobilized enzymes in biosensor applications. Materials, 12(1), 121.
  • [19] Özer, B. O. and Çete, S. (2017). Development of a novel biosensor based on a polypyrrole–dodecylbenzene sulphonate (PPy–DBS) film for the determination of amperometric cholesterol. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 824-832.
  • [20] Çete, S., Yaşar, A., and Arslan, F. (2006). An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Artificial Cells, Blood Substitutes, and Biotechnology, 34(3), 367-380.
  • [21] Yıldırımoğlu, F., Arslan, F., Çete, S., and Yaşar, A. (2009). Preparation of a polypyrrole-polyvinylsulphonate composite film biosensor for determination of cholesterol based on entrapment of cholesterol oxidase. Sensors, 9(8), 6435-6445.
  • [22] Dolmacı, N., Çete, S., Arslan, F., and Yaşar, A. (2012). An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artificial Cells, Blood Substitutes, and Biotechnology, 40(4), 275-279.
  • [23] Çolak, Ö., Yaşar, A., Çete, S., and Arslan, F. (2012). Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly (vinyl sulphonate) composite film by cross-linking with glutaraldehyde. Artificial Cells, Blood Substitutes, and Biotechnology, 40(5), 354-361.
  • [24] Ivanov, A. N., Evtugyn, G. A., Gyurcsányi, R. E., Toth, K., and Budnikov, H. C. (2000). Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination. Analytica Chimica Acta, 404(1), 55-65.
  • [25] Andreou, V. G. and Clonis, Y. D. (2002). A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol–gel entrapped bromcresol purple for in-field use. Biosensors and Bioelectronics, 17(1-2), 61- 69.
  • [26] Marinov, I., Ivanov, Y., Gabrovska, K., and Godjevargova, T. (2010). Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 62(1), 66-74.
  • [27] Chouteau, C., Dzyadevych, S., Durrieu, C., and Chovelon, J. M. (2005). A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosensors and Bioelectronics, 21(2), 273-281.
  • [28] Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F., and Ono, M. (2009). Amperometric biosensor based on enzymes immobilized in hybrid mesoporous membranes for the determination of acetylcholine. Enzyme and Microbial Technology, 45(6-7), 443-448.
  • [29] Ivanov, Y., Marinov, I., Gabrovska, K., Dimcheva, N., and Godjevargova, T. (2010). Amperometric biosensor based on a site-specific immobilization of acetylcholinesterase via affinity bonds on a nanostructured polymer membrane with integrated multiwall carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 63(3-4), 141- 148.
  • [30] Stein, K. and Schwedt, G. (1993). Comparison of immobilization methods for the development of an acetylcholinesterase biosensor. Analytica chimica acta, 272(1), 73-81.
  • [31] Marty, J. L., Mionetto, N., Noguer, T., Ortega, F., and Roux, C. (1993). Enzyme sensors for the detection of pesticides. Biosensors and Bioelectronics, 8(6), 273-280.
  • [32] Lee, H. S., Kim, Y. A., Cho, Y. A., and Lee, Y. T. (2002). Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere, 46(4), 571-576.
  • [33] Rekha, K. and Murthy, B. N. (2008). Studies on the immobilisation of acetylcholine esterase enzyme for biosensor applications. Food and Agricultural Immunology, 19(4), 273-281.
  • [34] Li, Yanbin. (2006). Biosensors, CIGR Handbook of Agricultural Engineering USA, ASABE. Copyright American Society of Agricultural Engineers, 52-93.
  • [35] Sassolas, A., Leca-Bouvier, B. D., and Blum, L. J. (2008). DNA biosensors and microarrays. Chemical Reviews, 108(1), 109-139.
  • [36] Donmez, S., Arslan, F., and Arslan, H. (2015). A nucleic acid biosensor for detection of hepatitis C virus genotype 1a using poly (l-glutamic acid)-modified electrode. Applied Biochemistry and Biotechnology, 176(5), 1431-1444.
  • [37] Yesil, M., Donmez, S., and Arslan, F. (2016). Development of an electrochemical DNA biosensor for detection of specific Mycobacterium tuberculosis sequence based on poly (L-glutamic acid) modified electrode. Journal of Chemical Sciences, 128(11), 1823-1829.
  • [38] Donmez, S., Çağdaş, L., Arslan, H., and Arslan, F. (2019). Electrochemical nucleic acid hybridization biosensor based on poly (L-Aspartic acid)-modified electrode for the detection of short oligonucleotide sequences related to hepatitis C virus 1a. Preparative Biochemistry and Biotechnology, 49(9), 900-907.
  • [39] Hartwell, S. K. and Grudpan, K. (2010). Flow based immuno/bioassay and trends in micro-immuno/biosensors. Microchimica Acta, 169(3-4), 201-220.
  • [40] Heinemann, W. R., Anderson, C. W., and Halsall H. B. (1979). Immunoassay by differential pulse polarography. Science Wash, 204, 865-866.
  • [41] Pizzariello, A., Stredanský, M., Stredanská, S., and Miertuš, S. (2001). Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. Talanta, 54(4), 763-772.
  • [42] Cass, E. A. G., (1990). Biosensors: A Practical Approach. Oxford, UK, Oxford University Press.
  • [43] Soldatkin, O. O., Kucherenko, I. S., Pyeshkova, V. M., Kukla, A. L., Jaffrezic-Renault, N., El'Skaya, A. V., and Soldatkin, A. P. (2012). Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry, 83, 25-30.
  • [44] Jaffrezic-Renault, N. and Dzyadevych, S. V. (2008). Conductometric microbiosensors for environmental monitoring. Sensors, 8(4), 2569-2588.
  • [45] Marazuela, M. and Moreno-Bondi, M. (2002). Fiber-optic biosensors–An overview. Analytical and Bioanalytical Chemistry, 372(5-6), 664-682.
  • [46] Pohanka, M. (2018). Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 11(3), 448.
  • [47] Yakovleva, M., Bhand, S., and Danielsson, B. (2013). The enzyme thermistor—A realistic biosensor concept. A critical review. Analytica Chimica Acta, 766, 1-12.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derlemeler
Yazarlar

Merve Keskin Bu kişi benim

Fatma Arslan

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Keskin, M., & Arslan, F. (2020). Biyosensörler. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 51-60. https://doi.org/10.5281/zenodo.4317958
AMA Keskin M, Arslan F. Biyosensörler. GÜFFD. Aralık 2020;1(1-2):51-60. doi:10.5281/zenodo.4317958
Chicago Keskin, Merve, ve Fatma Arslan. “Biyosensörler”. Gazi Üniversitesi Fen Fakültesi Dergisi 1, sy. 1-2 (Aralık 2020): 51-60. https://doi.org/10.5281/zenodo.4317958.
EndNote Keskin M, Arslan F (01 Aralık 2020) Biyosensörler. Gazi Üniversitesi Fen Fakültesi Dergisi 1 1-2 51–60.
IEEE M. Keskin ve F. Arslan, “Biyosensörler”, GÜFFD, c. 1, sy. 1-2, ss. 51–60, 2020, doi: 10.5281/zenodo.4317958.
ISNAD Keskin, Merve - Arslan, Fatma. “Biyosensörler”. Gazi Üniversitesi Fen Fakültesi Dergisi 1/1-2 (Aralık 2020), 51-60. https://doi.org/10.5281/zenodo.4317958.
JAMA Keskin M, Arslan F. Biyosensörler. GÜFFD. 2020;1:51–60.
MLA Keskin, Merve ve Fatma Arslan. “Biyosensörler”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 1, sy. 1-2, 2020, ss. 51-60, doi:10.5281/zenodo.4317958.
Vancouver Keskin M, Arslan F. Biyosensörler. GÜFFD. 2020;1(1-2):51-60.