Bu çalışmada, 𝛾-büzülme ve γ-zayıf büzülmeyi kullanarak genelleştirilmiş çoğul değerli γ-tip-I-büzülme
ve γ-tip-II-büzülme olarak adlandırılan iki yeni büzülme tanımlanmıştır. Fuzzy metrik uzaylarda
genelleştirilmiş çoğul değerli 𝛾-büzülme dönüşümleri için bazı sabit nokta teoremleri elde edilmiştir. Elde
edilen sonuçların geçerliliğini göstermek için bir örnek verilmiştir.
[1] Deng, Z. (1922). Fuzzy pseudometric spaces, Journal of Mathematical Analysis and Applications, 86, 74-95.
[2] Grabiec, M. (1988). Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (3), 385-389.
[3] Istrăţescu, V. (1974). An introduction to theory of probabilistic metric spaces with applications, Ed, Tehnică,
Bucureşti, in Romanian.
[4] Kramosil, I. and Michalek, J. (1975). Fuzzy metric and statistical metric spaces, Kybernetika, 11(5), 336-
344.
[5] Schweizer, B. And Sklar, A. (1960). Statistical metric spaces, Pacific Journal of Mathematics, 10(1), 385-
389.
[6] Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, Amsterdam, USA.
[7] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leurs applications aux équations
intégrales, Fundamenta Mathematicae, 3, 133-181.
[8] Salimi, P., Vetro, C., and Vetro, P. (2013). Some new fixed point results in non-Archimedean fuzzy metric
spaces, Nonlinear Analysis: Modelling and Control, 18(3), 344-358.
[9] Sangurlu, M. and Turkoglu, D. (2015). Fixed point theorems for (𝜓 ∘ 𝜑)-contractions in a fuzzy metric
spaces, Journal of Nonlinear Science and Applications, 8, 687-694.
[10] Sezen, M.S. (2019). Fixed point theorems for new type contractive mappings, Journal of Function Spaces,
2019, Article ID 2153563, 6.
[11] Rodríguez-López, J. and Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets, Fuzzy Sets
and Systems, 147(2), 273-283.
[12] George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64
(3), 395-399.
[13] Altun, I. (2010). Some fixed point theorems for single and multi valued mappings on ordered nonArchimedean fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 7(1), 91-96.
[14] Altun, I., Mınak G., and Dağ, H. (2015). Multivalued F-contractions on complete metric spaces, Journal of
Nonlinear and Convex Analysis, 16(4), 659-666.
[15] Došenović, T., Rakić, D., Carić, B., and Radenović, S. (2016). Multivalued generalizations of fixed point
results in fuzzy metric spaces, Nonlinear Analysis: Modelling and Control, 21(2), 211–222.
[16] Saleem, N., Ali, B., Abbas M., and Raza, Z. Fixed points of Suzuki type generalized multivalued mappings
in fuzzy metric spaces with applications, Fixed Point Theory and Applications, 2015(36).
[17] Phiangsungnoen, S., Sintunavarat W., and Kumam, P. (2014). Fuzzy fixed point theorems in Hausdorff
fuzzy metric spaces, Journal of Inequalities and Applications, 2014(201).
[18] Qiu, Z. and Hong, S. (2013). Coupled fixed points for multivalued mappings in fuzzy metric spaces, Fixed
Point Theory and Applications, 2013(162).
[19] Gregori, V. and Sapena, A. (2002). On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems,
125(2), 245-252.
[20] Vasuki, R. and Veeramani P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces,
Fuzzy Sets and Systems, 135(3), 409-413.
[1] Deng, Z. (1922). Fuzzy pseudometric spaces, Journal of Mathematical Analysis and Applications, 86, 74-95.
[2] Grabiec, M. (1988). Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (3), 385-389.
[3] Istrăţescu, V. (1974). An introduction to theory of probabilistic metric spaces with applications, Ed, Tehnică,
Bucureşti, in Romanian.
[4] Kramosil, I. and Michalek, J. (1975). Fuzzy metric and statistical metric spaces, Kybernetika, 11(5), 336-
344.
[5] Schweizer, B. And Sklar, A. (1960). Statistical metric spaces, Pacific Journal of Mathematics, 10(1), 385-
389.
[6] Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, Amsterdam, USA.
[7] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leurs applications aux équations
intégrales, Fundamenta Mathematicae, 3, 133-181.
[8] Salimi, P., Vetro, C., and Vetro, P. (2013). Some new fixed point results in non-Archimedean fuzzy metric
spaces, Nonlinear Analysis: Modelling and Control, 18(3), 344-358.
[9] Sangurlu, M. and Turkoglu, D. (2015). Fixed point theorems for (𝜓 ∘ 𝜑)-contractions in a fuzzy metric
spaces, Journal of Nonlinear Science and Applications, 8, 687-694.
[10] Sezen, M.S. (2019). Fixed point theorems for new type contractive mappings, Journal of Function Spaces,
2019, Article ID 2153563, 6.
[11] Rodríguez-López, J. and Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets, Fuzzy Sets
and Systems, 147(2), 273-283.
[12] George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64
(3), 395-399.
[13] Altun, I. (2010). Some fixed point theorems for single and multi valued mappings on ordered nonArchimedean fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 7(1), 91-96.
[14] Altun, I., Mınak G., and Dağ, H. (2015). Multivalued F-contractions on complete metric spaces, Journal of
Nonlinear and Convex Analysis, 16(4), 659-666.
[15] Došenović, T., Rakić, D., Carić, B., and Radenović, S. (2016). Multivalued generalizations of fixed point
results in fuzzy metric spaces, Nonlinear Analysis: Modelling and Control, 21(2), 211–222.
[16] Saleem, N., Ali, B., Abbas M., and Raza, Z. Fixed points of Suzuki type generalized multivalued mappings
in fuzzy metric spaces with applications, Fixed Point Theory and Applications, 2015(36).
[17] Phiangsungnoen, S., Sintunavarat W., and Kumam, P. (2014). Fuzzy fixed point theorems in Hausdorff
fuzzy metric spaces, Journal of Inequalities and Applications, 2014(201).
[18] Qiu, Z. and Hong, S. (2013). Coupled fixed points for multivalued mappings in fuzzy metric spaces, Fixed
Point Theory and Applications, 2013(162).
[19] Gregori, V. and Sapena, A. (2002). On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems,
125(2), 245-252.
[20] Vasuki, R. and Veeramani P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces,
Fuzzy Sets and Systems, 135(3), 409-413.
Sangurlu Sezen, M. (2020). Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 101-108. https://doi.org/10.5281/zenodo.4398874
AMA
Sangurlu Sezen M. Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. GÜFFD. Aralık 2020;1(1-2):101-108. doi:10.5281/zenodo.4398874
Chicago
Sangurlu Sezen, Müzeyyen. “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 1, sy. 1-2 (Aralık 2020): 101-8. https://doi.org/10.5281/zenodo.4398874.
EndNote
Sangurlu Sezen M (01 Aralık 2020) Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. Gazi Üniversitesi Fen Fakültesi Dergisi 1 1-2 101–108.
IEEE
M. Sangurlu Sezen, “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”, GÜFFD, c. 1, sy. 1-2, ss. 101–108, 2020, doi: 10.5281/zenodo.4398874.
ISNAD
Sangurlu Sezen, Müzeyyen. “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 1/1-2 (Aralık 2020), 101-108. https://doi.org/10.5281/zenodo.4398874.
JAMA
Sangurlu Sezen M. Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. GÜFFD. 2020;1:101–108.
MLA
Sangurlu Sezen, Müzeyyen. “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 1, sy. 1-2, 2020, ss. 101-8, doi:10.5281/zenodo.4398874.
Vancouver
Sangurlu Sezen M. Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. GÜFFD. 2020;1(1-2):101-8.