Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri

Yıl 2020, , 101 - 108, 30.12.2020
https://doi.org/10.5281/zenodo.4398874

Öz

Bu çalışmada, 𝛾-büzülme ve γ-zayıf büzülmeyi kullanarak genelleştirilmiş çoğul değerli γ-tip-I-büzülme
ve γ-tip-II-büzülme olarak adlandırılan iki yeni büzülme tanımlanmıştır. Fuzzy metrik uzaylarda
genelleştirilmiş çoğul değerli 𝛾-büzülme dönüşümleri için bazı sabit nokta teoremleri elde edilmiştir. Elde
edilen sonuçların geçerliliğini göstermek için bir örnek verilmiştir.

Kaynakça

  • [1] Deng, Z. (1922). Fuzzy pseudometric spaces, Journal of Mathematical Analysis and Applications, 86, 74-95.
  • [2] Grabiec, M. (1988). Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (3), 385-389.
  • [3] Istrăţescu, V. (1974). An introduction to theory of probabilistic metric spaces with applications, Ed, Tehnică, Bucureşti, in Romanian.
  • [4] Kramosil, I. and Michalek, J. (1975). Fuzzy metric and statistical metric spaces, Kybernetika, 11(5), 336- 344.
  • [5] Schweizer, B. And Sklar, A. (1960). Statistical metric spaces, Pacific Journal of Mathematics, 10(1), 385- 389.
  • [6] Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, Amsterdam, USA.
  • [7] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fundamenta Mathematicae, 3, 133-181.
  • [8] Salimi, P., Vetro, C., and Vetro, P. (2013). Some new fixed point results in non-Archimedean fuzzy metric spaces, Nonlinear Analysis: Modelling and Control, 18(3), 344-358.
  • [9] Sangurlu, M. and Turkoglu, D. (2015). Fixed point theorems for (𝜓 ∘ 𝜑)-contractions in a fuzzy metric spaces, Journal of Nonlinear Science and Applications, 8, 687-694.
  • [10] Sezen, M.S. (2019). Fixed point theorems for new type contractive mappings, Journal of Function Spaces, 2019, Article ID 2153563, 6.
  • [11] Rodríguez-López, J. and Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147(2), 273-283.
  • [12] George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (3), 395-399.
  • [13] Altun, I. (2010). Some fixed point theorems for single and multi valued mappings on ordered nonArchimedean fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 7(1), 91-96.
  • [14] Altun, I., Mınak G., and Dağ, H. (2015). Multivalued F-contractions on complete metric spaces, Journal of Nonlinear and Convex Analysis, 16(4), 659-666.
  • [15] Došenović, T., Rakić, D., Carić, B., and Radenović, S. (2016). Multivalued generalizations of fixed point results in fuzzy metric spaces, Nonlinear Analysis: Modelling and Control, 21(2), 211–222.
  • [16] Saleem, N., Ali, B., Abbas M., and Raza, Z. Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications, Fixed Point Theory and Applications, 2015(36).
  • [17] Phiangsungnoen, S., Sintunavarat W., and Kumam, P. (2014). Fuzzy fixed point theorems in Hausdorff fuzzy metric spaces, Journal of Inequalities and Applications, 2014(201).
  • [18] Qiu, Z. and Hong, S. (2013). Coupled fixed points for multivalued mappings in fuzzy metric spaces, Fixed Point Theory and Applications, 2013(162).
  • [19] Gregori, V. and Sapena, A. (2002). On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125(2), 245-252.
  • [20] Vasuki, R. and Veeramani P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems, 135(3), 409-413.
Yıl 2020, , 101 - 108, 30.12.2020
https://doi.org/10.5281/zenodo.4398874

Öz

Kaynakça

  • [1] Deng, Z. (1922). Fuzzy pseudometric spaces, Journal of Mathematical Analysis and Applications, 86, 74-95.
  • [2] Grabiec, M. (1988). Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (3), 385-389.
  • [3] Istrăţescu, V. (1974). An introduction to theory of probabilistic metric spaces with applications, Ed, Tehnică, Bucureşti, in Romanian.
  • [4] Kramosil, I. and Michalek, J. (1975). Fuzzy metric and statistical metric spaces, Kybernetika, 11(5), 336- 344.
  • [5] Schweizer, B. And Sklar, A. (1960). Statistical metric spaces, Pacific Journal of Mathematics, 10(1), 385- 389.
  • [6] Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, Amsterdam, USA.
  • [7] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fundamenta Mathematicae, 3, 133-181.
  • [8] Salimi, P., Vetro, C., and Vetro, P. (2013). Some new fixed point results in non-Archimedean fuzzy metric spaces, Nonlinear Analysis: Modelling and Control, 18(3), 344-358.
  • [9] Sangurlu, M. and Turkoglu, D. (2015). Fixed point theorems for (𝜓 ∘ 𝜑)-contractions in a fuzzy metric spaces, Journal of Nonlinear Science and Applications, 8, 687-694.
  • [10] Sezen, M.S. (2019). Fixed point theorems for new type contractive mappings, Journal of Function Spaces, 2019, Article ID 2153563, 6.
  • [11] Rodríguez-López, J. and Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147(2), 273-283.
  • [12] George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (3), 395-399.
  • [13] Altun, I. (2010). Some fixed point theorems for single and multi valued mappings on ordered nonArchimedean fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 7(1), 91-96.
  • [14] Altun, I., Mınak G., and Dağ, H. (2015). Multivalued F-contractions on complete metric spaces, Journal of Nonlinear and Convex Analysis, 16(4), 659-666.
  • [15] Došenović, T., Rakić, D., Carić, B., and Radenović, S. (2016). Multivalued generalizations of fixed point results in fuzzy metric spaces, Nonlinear Analysis: Modelling and Control, 21(2), 211–222.
  • [16] Saleem, N., Ali, B., Abbas M., and Raza, Z. Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications, Fixed Point Theory and Applications, 2015(36).
  • [17] Phiangsungnoen, S., Sintunavarat W., and Kumam, P. (2014). Fuzzy fixed point theorems in Hausdorff fuzzy metric spaces, Journal of Inequalities and Applications, 2014(201).
  • [18] Qiu, Z. and Hong, S. (2013). Coupled fixed points for multivalued mappings in fuzzy metric spaces, Fixed Point Theory and Applications, 2013(162).
  • [19] Gregori, V. and Sapena, A. (2002). On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125(2), 245-252.
  • [20] Vasuki, R. and Veeramani P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems, 135(3), 409-413.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Müzeyyen Sangurlu Sezen Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sangurlu Sezen, M. (2020). Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 101-108. https://doi.org/10.5281/zenodo.4398874
AMA Sangurlu Sezen M. Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. GÜFFD. Aralık 2020;1(1-2):101-108. doi:10.5281/zenodo.4398874
Chicago Sangurlu Sezen, Müzeyyen. “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 1, sy. 1-2 (Aralık 2020): 101-8. https://doi.org/10.5281/zenodo.4398874.
EndNote Sangurlu Sezen M (01 Aralık 2020) Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. Gazi Üniversitesi Fen Fakültesi Dergisi 1 1-2 101–108.
IEEE M. Sangurlu Sezen, “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”, GÜFFD, c. 1, sy. 1-2, ss. 101–108, 2020, doi: 10.5281/zenodo.4398874.
ISNAD Sangurlu Sezen, Müzeyyen. “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 1/1-2 (Aralık 2020), 101-108. https://doi.org/10.5281/zenodo.4398874.
JAMA Sangurlu Sezen M. Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. GÜFFD. 2020;1:101–108.
MLA Sangurlu Sezen, Müzeyyen. “Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 1, sy. 1-2, 2020, ss. 101-8, doi:10.5281/zenodo.4398874.
Vancouver Sangurlu Sezen M. Genelleştirilmiş Çoğul Değerli 𝜸-Büzülmeler için Sabit Nokta Teoremleri. GÜFFD. 2020;1(1-2):101-8.