Araştırma Makalesi
BibTex RIS Kaynak Göster

Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları

Yıl 2025, Cilt: 6 Sayı: 2, 215 - 233, 29.11.2025
https://doi.org/10.63716/guffd.1679641

Öz

Bu çalışmada, çevresel açıdan zararlı metilen mavisi boyası, metal iyonları ve yağların giderimi amacıyla, çok işlevli ve sürdürülebilir bir kompozit sünger sistemi geliştirildi. Titanyumdioksit (TiO₂) partikülleri, izosiyanat uç grubu taşıyan silan ajan (IPTMS) ile yüzey modifikasyonu ardından ışığa duyarlı spiropiran molekülü ile fonksiyonelleştirilerek TiO₂-SP yapısı elde edildi. TiO₂-SP partiküllerinin sulu ortamlardan kolayca geri kazanımını sağlamak amacıyla, polidimetilsiloksan (PDMS) sünger matrisi içerisinde homojen bir şekilde dağıtılarak gözenekli ve esnek yapıda makroskobik kompozit süngerler (TiO₂-SP/PDMS)hazırlandı. Süngerlerin yapısal özellikleri ATR-FTIR spektroskopisi, morfolojik yapısı taramalı elektron mikroskobu (SEM), hidrofobik özellikleri su temas açısı ölçümleri ve mekanik özellikleri sıkıştırma testleri ile karakterize edildi. Üretilen TiO₂-SP/PDMS kompozit süngerler, 1 gram başına % 25,1 ± 8,1 metilen mavisi giderimi ve 4,51 mg•g⁻¹ Cu²⁺ iyonu adsorpsiyon kapasitesi ile etkili bir performans sergiledi. Temas açısı ölçümleri sonucunda, sünger yüzeylerinin suya karşı ortalama 129,2 ° temas açısı ile belirgin bir hidrofobik karakter sergilediği tespit edilmiştir. Ayrıca, TiO₂-SP/PDMS kompozit süngerlerin hekzan, silikon yağı, diklorometan, ayçiçeği yağı ve toluen absorpsiyon kapasiteleri sırasıyla yaklaşık %338, %245, %284, %256 ve %366 olarak ölçülmüştür. Tüm bu sonuçlar, geliştirilen TiO₂-SP/PDMS kompozit süngerlerin, boya ve metal iyonlarının giderimi ile yağ-su ayırımı gibi çeşitli çevresel uygulamalarda alternatif bir malzeme olarak önemli katkılar sunma potansiyeline sahip olduğunu ortaya koymaktadır.

Kaynakça

  • Alharbi, N. S., Hu, B., Hayat, T., Rabah, S. O., Alsaedi, A., Zhuang, L., Wang, X. (2020). Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 14, 1124–1135.
  • Aslam, A. A., Hassan, S. U., Saeed, M. H., Kokab, O., Ali, Z., Nazir, M. S., Siddiqi, W., Aslam, A. A. (2023). Cellulose-based adsorbent materials for water remediation: Harnessing their potential in heavy metals and dyes removal. Journal of Cleaner Production, 421, 138555.
  • Ghaedi, M., Ghayedi, M., Kokhdan, S. N., Sahraei, R., Daneshfar, A. (2013). Palladium, silver, and zinc oxide nanoparticles loaded on activated carbon as adsorbent for removal of bromophenol red from aqueous solution. Journal of Industrial and Engineering Chemistry, 19, 1209–1217.
  • Cheng, S., Zhang, L., Ma, A., Xia, H., Peng, J., Li, C., Shu, J. (2018). Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. Journal of Environmental Sciences, 65, 92–102.
  • Futalan, C. M., Kan, C.-C., Dalida, M. L., Pascua, C., Wan, M.-W. (2011). Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydrate Polymers, 83, 697–704.
  • Nasar, A., Mashkoor, F. (2019). Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environmental Science and Pollution Research, 26, 5333–5356.
  • Tsoumachidou, S., Berberidou, C., Kitsiou, V., Poulios, I. (2021). Photocatalytic oxidation of simulated and real hazardous medical wastewater: Decolorization, mineralization and toxicity evaluation. Journal of Chemical Technology & Biotechnology, 96, 3207–3215.
  • Szczepanik, B. (2017). Photocatalytic degradation of organic contaminants over clay-TiO₂ nanocomposites: A review. Applied Clay Science, 141, 227–239.
  • Kanan, S., Moyet, M. A., Arthur, R. B., Patterson, H. H. (2020). Recent advances on TiO₂-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews, 62, 1–65.
  • Ismael, M. (2020). A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO₂ nanoparticles. Solar Energy, 211, 522–546.
  • Pinho, L., Mosquera, M. J. (2011). Titania-Silica nanocomposite photocatalysts with application in stone self-cleaning. The Journal of Physical Chemistry C, 115(45), 22851–22862.
  • Nakata, K., Fujishima, A. (2012). TiO₂ photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189.
  • Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.
  • L.-L. Li, X.-Q. Feng, R.-P. Han, S.-Q. Zang, G. Yang, Cr(VI) removal via anion exchange on a silver-triazolate MOF. Journal of Hazardous Materials, 321 (2017) 622–628. https://doi.org/10.1016/j.jhazmat.2016.09.029.
  • Korak, J. A., Huggins, R., Arias-Paic, M. (2017). Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal. Water Research, 118, 141–151.
  • Hasanpour, M., Hatami, M. (2020). Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Advances in Colloid and Interface Science, 284, 102247.
  • Uribe Santos, D. L., Delgado Dobladez, J. A., Águeda Maté, V. I., Álvarez Torrellas, S., Larriba Martínez, M. (2020). Recovery and purification of acetic acid from aqueous mixtures by simulated moving bed adsorption with methanol and water as desorbents. Separation and Purification Technology, 237, 116368.
  • Shao, N., Zhang, Y., Cheung, S., Yang, R., Chan, W., Mo, T., Li, K., Liu, F. (2005). Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Analytical Chemistry, 77(22), 7294–7303.
  • Ahmed, S. A., Tanaka, M., Ando, H., Tawa, K., Kimura, K. (2004). Fluorescence emission control and switching of oxymethylcrowned spirobenzopyrans by metal ion. Tetrahedron, 60(27), 6029–6036.
  • Huang, M., Zhou, J., Zheng, X., Zhang, Y., Xu, S., Li, Z. (2020). Novel spiropyran derivative based reversible photo-driven colorimetric and fluorescent probes for recognizing Fe³⁺, Cr³⁺ and Al³⁺ metal ions. Inorganic Chemistry Communications, 117, 107968.
  • Ali, A. A., Kharbash, R., Kim, Y. (2020). Chemo- and biosensing applications of spiropyran and its derivatives – A review. Analytica Chimica Acta, 1110, 199–223.
  • Suzuki, T., Kawata, Y., Kahata, S., Kato, T. (2003). Photo-reversible Pb²⁺-complexation of insoluble poly(spiropyran methacrylate-co-perfluorohydroxy methacrylate) in polar solvents. Chemical Communications, 16, 18-20.
  • Wang, K.-P., Deng, Y.-P., Wang, T., Wang, Q.-D., Qian, C.-G., Zhang, X.-Y. (2020). Development of spiropyran bonded bio-based waterborne polyurethanes for mechanical-responsive color-variable films. Polymer, 210, 123017.
  • Zhu, Y., Wang, D., Jiang, L., Jin, J. (2014). Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials, 6, e101–e101.
  • Nordvik, A. B., Simmons, J. L., Bitting, K. R., Lewis, A., Strøm-Kristiansen, T. (1996). Oil and water separation in marine oil spill clean-up operations. Spill Science & Technology Bulletin, 3(3), 107–122.
  • Wang, B., Liang, W., Guo, Z., Liu, W. (2015). Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 44(1), 336–361.
  • Ma, Q., Cheng, H., Fane, A. G., Wang, R., Zhang, H. (2016). Recent development of advanced materials with special wettability for selective oil/water separation. Small, 12(16), 2186–2202.
  • Enache, D. F., Vasile, E., Simonescu, C. M., Răzvan, A., Nicolescu, A., Nechifor, A.-C., Oprea, O., Pătescu, R.-E., Onose, C., Dumitru, F. (2017). Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents. Journal of Solid State Chemistry, 253, 318–328.
  • Zhang, Q., Dong, R., Chang, X., Ren, B., Tong, Z. (2015). Spiropyran-decorated SiO₂–Pt Janus micromotor: Preparation and light-induced dynamic self-assembly and disassembly. ACS Applied Materials & Interfaces, 7(45), 24585–24591.
  • Zhao, J., Milanova, M., Warmoeskerken, M. M. C. G., Dutschk, V. (2012). Surface modification of TiO₂ nanoparticles with silane coupling agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 273–279.
  • Allouche, J., Le Beulze, A., Dupin, J.-C., Ledeuil, J.-B., Blanc, S., Gonbeau, D. (2010). Hybrid spiropyran–silica nanoparticles with a core-shell structure: Sol–gel synthesis and photochromic properties. Journal of Materials Chemistry, 20, 9370.
  • Zhang, L., Li, R., Ding, H., Chen, D., Wang, X. (2024). Preparation of a self-cleaning TiO₂–SiO₂/PFDTS coating with superamphiphobicity and photocatalytic performance. Progress in Organic Coatings, 197, 108767.
  • Hickman, R., Walker, E., Chowdhury, S. (2018). TiO₂–PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. Journal of Water Process Engineering, 24, 74–82.
  • Choi, S.-J., Kwon, T.-H., Im, H., Moon, D.-I., Baek, D. J., Seol, M.-L., Duarte, J. P., Choi, Y.-K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces, 3(12), 4552–4556.
  • Liu, G., Wang, M., Gao, H., Cui, C., Gao, J. (2021). Spiropyran modified polyvinyl alcohol sponge as a light-responsive adsorbent for the removal of Pb(II) in aqueous solution. European Polymer Journal, 161, 110828.
  • Kanokwijitsilp, T., Körner, M., Prucker, O., Anton, A., Lübke, J., Rühe, J. (2021). Kinetics of photocrosslinking and surface attachment of thick polymer films. Macromolecules, 54(14), 6238–6246.
  • Shin, J. H., Heo, J.-H., Jeon, S., Park, J. H., Kim, S., Kang, H.-W. (2019). Bio-inspired hollow PDMS sponge for enhanced oil–water separation. Journal of Hazardous Materials, 365, 494–501.
  • Ukaji, E., Furusawa, T., Sato, M., Suzuki, N. (2007). The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO₂ particles as inorganic UV filter. Applied Surface Science, 254(2), 563–569.
  • Wang, Z., Liu, F., Han, E., Ke, W., Luo, S. (2009). Effect of ZnO nanoparticles on anti-aging properties of polyurethane coating. Science Bulletin, 54(22), 3464–3472.
  • Chen, Q., Yakovlev, N. L. (2010). Adsorption and interaction of organosilanes on TiO₂ nanoparticles. Applied Surface Science, 257(4), 1395–1400.
  • Grover, I. S., Singh, S., Pal, B. (2013). The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO₂ nanostructures of different shapes. Applied Surface Science, 280, 366–372.
  • Bevilacqua, F., Cibaka-Ndaya, C., Sanz Camacho, P., Lacomme, S., Durand, E., Ledeuil, J.-B., Allouche, J., Boissière, C., Sanchez, C., Drisko, G. L. (2025). Impact on silica particle physical characteristics of co-condensed alkoxide precursors. Journal of Materials Chemistry C, 13, 7318–7326.
  • Abdollahi, A., Sahandi-Zangabad, K., Roghani-Mamaqani, H. (2018). Light-induced aggregation and disaggregation of stimuli-responsive latex particles depending on spiropyran concentration: Kinetics of photochromism and investigation of reversible photopatterning. Langmuir, 34, 13910–13923.
  • Ye, X., Wang, A., Zhang, D., Zhou, P., Zhu, P. (2023). Light and pH dual-responsive spiropyran-based cellulose nanocrystals. RSC Advances, 13, 11495–11502.
  • Wang, B., Shen, L., Xu, J., Fei, L., Li, B., Lin, H., Chen, C. (2024). Spiropyran molecular aggregates implanted photo-responsive graphene oxide membrane with self-cleaning ability for enhanced water purification. Journal of Membrane Science, 702, 122744.
  • Ataabadi, M. R., Jamshidi, M. (2023). Silane modification of TiO₂ nanoparticles and usage in acrylic film for effective photocatalytic degradation of methylene blue under visible light. Scientific Reports, 13, 7383.
  • Ahmed, M. A., El-Katori, E. E., Gharni, Z. H. (2013). Photocatalytic degradation of methylene blue dye using Fe₂O₃/TiO₂ nanoparticles prepared by sol–gel method. Journal of Alloys and Compounds, 553, 19–29.
  • Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., Yang, M. (2012). Immobilization of TiO₂ nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. Journal of Hazardous Materials, 227–228, 185–194.
  • Ge, Y., Schimel, J. P., Holden, P. A. (2011). Evidence for negative effects of TiO₂ and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 45(4), 1659–1664.
  • Sosnin, I. M., Vlassov, S., Dorogin, L. M. (2021). Application of polydimethylsiloxane in photocatalyst composite materials: A review. Reactive and Functional Polymers, 158, 104781.
  • Kulikouskaya, V. I., Paribok, I. V., Pinchuk, S. V., Kraskouski, A. N., Vasilevich, I. B., Matievski, K. A., Agabekov, V. E., Volotovski, I. D. (2018). Polydimethylsiloxane films modified with chitosan/pectin multilayers as scaffolds for mesenchymal stem cells. Applied Biochemistry and Microbiology, 54(5), 468–473.
  • Mutlutürk, E., Özbek, D., Özcan, O., Birlik Demirel, G., Baytekin, B. (2024). Single-material solvent-driven polydimethylsiloxane sponge bending actuators. Soft Robotics, 11(4), 812–820.
  • Aronson, M. P., Petko, M. F. (1993). Highly concentrated water-in-oil emulsions: Influence of electrolyte on their properties and stability. Journal of Colloid and Interface Science, 159(1), 134–149.
  • San Keskin, N. O., Celebioglu, A., Sarioglu, O. F., Uyar, T., Tekinay, T. (2018). Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids and Surfaces B: Biointerfaces, 161, 169–176.
  • Freundlich, H. (1906). Over the adsorption in solution. Zeitschrift für Physikalische Chemie, 57, 385–470.
  • Ozkan Hukum, K., Tezcan, T., Salmanli, E., Tamer, U. (2024). New polymer brush-coated monodisperse magnetic nanoparticles prepared via interface-mediated RAFT polymerization for high-throughput DNA extraction from pathogen bacteria. Separation and Purification Technology, 333, 125867.
  • Guan, X., He, M., Chang, J., Wang, Z., Chen, Z., Fan, H. (2021). Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder. Journal of Environmental Chemical Engineering, 9(1), 104655.
  • Guo, J., Wang, J., Wang, W., Bai, Z., Zhang, Z., Zhang, Y., Zhang, S. (2019). The fabrication of 3D porous PDMS sponge for oil and organic solvent absorption. Environmental Progress & Sustainable Energy, 38(5).
  • Atabekyan, L. S. (2002). The kinetics of photocoloration of spiropyrans upon complexation. High Energy Chemistry, 36(6), 397–404.
  • Tichapondwa, S. M., Newman, J. P., Kubheka, O. (2020). Effect of TiO₂ phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118–119, 102900.
  • Arbuj, S. S., Hawaldar, R. R., Mulik, U. P., Wani, B. N., Amalnerkar, D. P., Waghmode, S. B. (2010). Preparation, characterization and photocatalytic activity of TiO₂ towards methylene blue degradation. Materials Science and Engineering: B, 168(1–3), 90–94.
  • Guan, X., He, M., Chang, J., Wang, Z., Chen, Z., & Fan, H. (2021). Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder. Journal of Environmental Chemical Engineering, 9(1), 104655.
  • Morais de Faria, J., Muniz, L. A., Netto, J. F. Z., Firak, D. S., De Sousa, F. B., Lisboa, F. da S. (2021). Application of a hybrid material formed by layered zinc hydroxide chloride modified with spiropyran in the adsorption of Ca²⁺ from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 631, 127738.
  • Liu, Y., Zhao, Y., Jiang, L. (2023). Spiropyran-decorated nanoporous metal–organic frameworks for reversible light-controlled adsorption of multiple salts from water: Implications for water purification. ACS Applied Nano Materials, 6(19), 17996–18004.
  • Lian, Z., Wei, C., Gao, B., Yang, X., Chan, Y., Wang, J., Chen, G. Z., Koh, K. S., Shi, Y., Yan, Y., Ren, Y., He, J., Liu, F. (2020). Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 10(15), 9210–9225.
  • Lee, S. Y., Kang, D., Jeong, S., Do, H. T., Kim, J. H. (2020). Photocatalytic degradation of Rhodamine B dye by TiO₂ and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega, 5(9), 4233–4241.
  • Shi, S., Li, K.-D., Li, Y.-X., Ma, Z.-D., Qi, S.-C., Liu, X.-Q., Sun, L.-B. (2023). Spiropyran-embedded metal–organic frameworks with thermoresponsiveness for tunable gas adsorption. ACS Materials Letters, 5(3), 2189–2196.
  • Shi, S., Ma, Z.-D., Li, Y.-X., Qi, S.-C., Sun, L.-B. (2024). Spiropyran-incorporated Y zeolite: A visible-light-responsive system for controllable CO adsorption. Chemical & Biological Engineering, 1(4), 783–789.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotokimya, Fiziksel Kimya (Diğer), Nanokimya
Bölüm Araştırma Makalesi
Yazarlar

Esma Mutluturk 0000-0002-1496-2206

Yayımlanma Tarihi 29 Kasım 2025
Gönderilme Tarihi 20 Nisan 2025
Kabul Tarihi 23 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Mutluturk, E. (2025). Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(2), 215-233. https://doi.org/10.63716/guffd.1679641
AMA Mutluturk E. Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları. GÜFFD. Kasım 2025;6(2):215-233. doi:10.63716/guffd.1679641
Chicago Mutluturk, Esma. “Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları”. Gazi Üniversitesi Fen Fakültesi Dergisi 6, sy. 2 (Kasım 2025): 215-33. https://doi.org/10.63716/guffd.1679641.
EndNote Mutluturk E (01 Kasım 2025) Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları. Gazi Üniversitesi Fen Fakültesi Dergisi 6 2 215–233.
IEEE E. Mutluturk, “Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları”, GÜFFD, c. 6, sy. 2, ss. 215–233, 2025, doi: 10.63716/guffd.1679641.
ISNAD Mutluturk, Esma. “Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları”. Gazi Üniversitesi Fen Fakültesi Dergisi 6/2 (Kasım2025), 215-233. https://doi.org/10.63716/guffd.1679641.
JAMA Mutluturk E. Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları. GÜFFD. 2025;6:215–233.
MLA Mutluturk, Esma. “Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 6, sy. 2, 2025, ss. 215-33, doi:10.63716/guffd.1679641.
Vancouver Mutluturk E. Fonksiyonel TiO₂-SP/PDMS Kompozit Süngerlerin Hazırlanması ve Boya, Metal, Yağ Giderimi Uygulamaları. GÜFFD. 2025;6(2):215-33.