Rosmarinik Asit ve Karvakrol Kombinasyonunun Diyabetik Yara İyileşmesi Modelinde Böbrek Oksidatif Stres Biyobelirteçleri Üzerine Modülatör Etkileri
Yıl 2025,
Cilt: 6 Sayı: 2, 395 - 408, 29.11.2025
Bahar Şahin
,
Feyza Kökkaya
,
Elif Naz Gürsoy
,
Kübra Şener
,
Şule Coşkun Cevher
Öz
Diyabetik yara iyileşmesi, yalnızca lokal doku hasarıyla sınırlı kalmayıp uzak organlarda da oksidatif stres aracılı sistemik etkiler ortaya çıkarmaktadır. Bu çalışmada, güçlü fenolik bileşikler olan Rosmarinik Asit (RA) ve Karvakrol (CAR) kombinasyonunun diyabetik rat böbrek dokusunda oksidatif stres parametreleri üzerindeki etkileri araştırılmıştır. Streptozotosin (STZ, 60 mg/kg, i.p.) ile diyabet modeli oluşturulan 72 Wistar Albino erkek rat, kontrol, diyabet, Karbopol jel, RA+CAR topikal (3. ve 7. gün) ve intraperitoneal (3. ve 7. gün) gruplarına ayrılmıştır. Böbrek dokularında Malondialdehit (MDA), Nitrik Oksit (NOx) ve Glutatyon (GSH) düzeyleri spektrofotometrik yöntemlerle belirlenmiştir. RA+CAR kombinasyonunun, tedavisiz gruplara kıyasla böbrek dokusunda MDA ve NOx düzeylerini anlamlı olarak azalttığı ve GSH düzeylerinde istatistiksel olarak anlamlı artış sağladığı belirlenmiştir (p<0,05). En belirgin etki 7 günlük intraperitoneal uygulamada gözlenmiş olup, bu grupta parametrelerin kontrol grubuna benzer düzeyler sergilediği gözlemlenmiştir. Bu bulgular, RA ve CAR kombinasyonunun diyabetik yara modelinde yalnızca lokal değil, sistemik düzeyde de oksidatif stresi modüle ederek terapötik potansiyel sunduğunu ortaya koymaktadır.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma TÜBİTAK 2209/A- Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destek Programı kapsamında desteklenmiştir.
Kaynakça
-
Reinke, J.M., and Sorg, H. (2012). Wound repair and regeneration. European Surgical Research, 49 (1), 35–43.
-
Dasari, N., Jiang, A., Skochdopole, A., Chung, J., Reece, E. M., Vorstenbosch, J., & Winocour, S. (2021). Updates in Diabetic Wound Healing, Inflammation, and Scarring. Seminars in Plastic Surgery, 35(3), 153–158.
-
Robson, M. C., Steed, D. L., & Franz, M. G. (2001). Wound healing: biologic features and approaches to maximize healing trajectories. Current Problems in Surgery, 38(2), 72–140.
-
Viera, M. H., Vivas, A. C., & Berman, B. (2012). Update on Keloid Management: Clinical and Basic Science Advances. Advances in Wound Care, 1(5), 200–206.
-
Calcutt, N. A., Lopez, V. L., Bautista, A. D., Mizisin, L. M., Torres, B. R., Shroads, A. L., Mizisin, A. P., & Stacpoole, P. W. (2009). Peripheral neuropathy in rats exposed to dichloroacetate. Journal of Neuropathology and Experimental Neurology, 68(9), 985–993.
-
Heinonen, S. E., Genové, G., Bengtsson, E., Hübschle, T., Åkesson, L., Hiss, K., Benardeau, A., Ylä-Herttuala, S., Jönsson-Rylander, A. C., & Gomez, M. F. (2015). Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. Journal of Diabetes Research, 2015, 404085.
-
Burgess, J. L., Wyant, W. A., Abdo Abujamra, B., Kirsner, R. S., & Jozic, I. (2021). Diabetic Wound-Healing Science. Medicina (Kaunas, Lithuania), 57(10), 1072.
-
Cano Sanchez, M., Lancel, S., Boulanger, E., & Neviere, R. (2018). Targeting Oxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants (Basel, Switzerland), 7(8), 98.
-
Sen C. K. (2009). Wound healing essentials: let there be oxygen. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society, 17(1), 1–18.
-
Frykberg, R. G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560–582.
-
Mauer, S. M., Steffes, M. W., & Brown, D. M. (1981). The kidney in diabetes. The American Journal of Medicine, 70(3), 603–612.
-
Hamamcıoğlu, A.C. (2017). Diyabette oksidatif stres ve antioksidanların rolü. Türk Diyabet ve Obezite Dergisi, 1, 7–13.
-
Caturano, A., D'Angelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T., Galiero, R., Rinaldi, L., Vetrano, E., Marfella, R., Monda, M., Giordano, A., & Sasso, F. C. (2023). Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Current İssues in Molecular Biology, 45(8), 6651–6666.
-
Pelle MC, Provenzano M, Busutti M, Porcu CV, Zaffina I, Stanga L, Arturi F. Up-Date on Diabetic Nephropathy. Life (Basel). 2022 Aug 8;12(8):1202.
-
Fakhruddin, S., Alanazi, W., & Jackson, K. E. (2017). Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. Journal of Diabetes Research, 2017, 8379327.
-
Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid. Phytochemistry, 62(2), 121–125.
-
Rao, N.K., Bethala, K., Sisinthy, S.P., and Rajeswari, K.S. (2014). Antidiabetic activity of Orthosiphon stamineus benth roots in streptozotocin induced type 2 diabetic rats. Asian Journal of Pharmaceutical and Clinical Research, 149–153.
-
Nadeem, M., Imran, M., Gondal, T.A., Imran, A., Shahbaz, M., Amir, R.M., Sajid, M.W., Qaisrani, T.B., Atif, M., Hussain, G., Salehi, B., Ostrander, E.A., Martorell, M., Sharifi-Rad, J., Cho, W.C., and Martins, N. (2019). Therapeutic potential of rosmarinic acid: A comprehensive review. Applied Sciences, 9 (15), 3139.
-
Gursul, S., Karabulut, I., & Durmaz, G. (2019). Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chemistry, 278, 805–810.
-
Tohidi, B., Rahimmalek, M., Arzani, A., & Sabzalian, M. R. (2020). Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chemistry, 307, 125521.
-
Guimarães, I., Baptista-Silva, S., and Pintado, M., Oliveira, A.L. (2021). Polyphenols: A promising avenue in therapeutic solutions for wound care. Applied Sciences, 11 (3), 1230.
-
Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278.
-
Gürsoy, E. N., Balabanli, K. B., Tuğcu Demiröz, F. N., & Coşkun Cevher, Ş. U. L. E. (2024). The cumulative effect of ellagic acid and carnosic acid attenuates oxidative events during diabetic wound healing: in different applications and on different days. Turkish Journal of Biology, 48(6), 364-378.
-
Kömür, S. (2024). Karvakrol ve Rosmarinik Asit Uygulamalarının Yara İyileşmesi Üzerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 91.
-
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in enzymology, 52, 302–310.
-
Aykaç, G., Uysal, M., Yalçin, A. S., Koçak-Toker, N., Sivas, A., & Oz, H. (1985). The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology, 36(1), 71–76.
-
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001 Feb;5(1):62-71.
-
Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188.
-
Ha, H., & Lee, H. B. (2005). Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton, Vic.), 10 Suppl, S7–S10.
-
Marrocco, I., Altieri, F., & Peluso, I. (2017). Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Medicine and Cellular Longevity, 2017, 6501046.
-
Altun, M., Uçar, B., Alver, E. N., Cevher, Ş. C. (2025). 2,4-Dinitrofenol (2,4-DNP) Kullanımının Üreme Organları Üzerindeki Uzun Dönem Etkileri: Over ve Testis Üzerine Bir Çalışma. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(1), 49-58.
-
Yılmaz, M., et al. (2020). Diyabet oluşturulan ratların böbrek dokusunda oksidatif stres ve apoptozis üzerine perilil alkolün koruyucu etkileri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 2020; 34 (1): 29-34
-
Samarghandian, S., Farkhondeh, T., Samini, F., & Borji, A. (2016). Protective Effects of Carvacrol against Oxidative Stress Induced by Chronic Stress in Rat's Brain, Liver, and Kidney. Biochemistry Research İnternational, 2016, 2645237.
-
Sadeghi, A., Bastin, A. R., Ghahremani, H., & Doustimotlagh, A. H. (2020). The effects of rosmarinic acid on oxidative stress parameters and inflammatory cytokines in lipopolysaccharide-induced peripheral blood mononuclear cells. Molecular Biology Reports, 47(5), 3557–3566.
-
Tabibzadeh Dezfuli, S., et al. (2025). Modulation effects of carvacrol on inflammatory and antioxidant system’s gene expression of diabetic rats. GMJ Medicine, 4 (2), 53–57.
-
Jafaripour, L., Naserzadeh, R., Alizamani, E., Javad Mashhadi, S. M., Moghadam, E. R., Nouryazdan, N., & Ahmadvand, H. (2021). Effects of Rosmarinic Acid on Methotrexate-induced Nephrotoxicity and Hepatotoxicity in Wistar Rats. Indian Journal of Nephrology, 31(3), 218–224.
-
Ozcelik, D., Tuncdemir, M., Ozturk, M., & Uzun, H. (2011). Evaluation of trace elements and oxidative stress levels in the liver and kidney of streptozotocin-induced experimental diabetic rat model. General Physiology and Biophysics, 30(4), 356–363.
-
Mottaghi, M., Heidari, F., Komeili Movahed, T., Eidi, A., & Moslehi, A. (2025). Rosmarinic acid attenuated inflammation and apoptosis in folic acid-induced renal injury: Role of FoxO3/ NFκB pathway. Iranian Journal of Basic Medical Sciences, 28(3), 316–322.
-
Mushtaq, N., Schmatz, R., Ahmed, M., Pereira, L. B., da Costa, P., Reichert, K. P., Dalenogare, D., Pelinson, L. P., Vieira, J. M., Stefanello, N., de Oliveira, L. S., Mulinacci, N., Bellumori, M., Morsch, V. M., & Schetinger, M. R. (2015). Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats. Journal of Physiology and Biochemistry, 71(4), 743–751.
-
Aristatile, B., Al-Numair, K. S., Al-Assaf, A. H., & Pugalendi, K. V. (2011). Pharmacological effect of carvacrol on D: -galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. Journal of Natural Medicines, 65(3-4), 568–577.
-
Hashiesh, H.M., Elkhoely, A.A., Eissa, A.A., and Youns, M.M. (2018). Rosmarinic acid enhances cisplatin cytotoxicity in HepG2 cells and reduces nephrotoxicity in mice. International Journal of Pharmaceutical Sciences and Research, 9 (7), 2731–2743.
-
Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E., & Jandeleit-Dahm, K. (2016). Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxidants & Redox Signaling, 25(12), 657–684.
-
Dellamea, B. S., Leitão, C. B., Friedman, R., & Canani, L. H. (2014). Nitric oxide system and diabetic nephropathy. Diabetology & Metabolic Syndrome, 6(1), 17.
-
Zhao, L., et al. (2018). Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food & Function, 9 (5), 2796–2808.