Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of 3D Printing Technology and Reinforced Concrete Frame Systems: An Exploratory Study

Yıl 2025, Cilt: 13 Sayı: 4, 589 - 605, 30.12.2025

Öz

This paper compares 3D printing technology with the conventional reinforced concrete frame system in the context of building construction. By conducting an extensive literature review, the study examines the technical, material, and time aspects of both methods. A fictional single-store residential project of 150 m² was designed initially to assess and evaluate each approach descriptively. The analysis covers the design stage, construction processes, timeframes, labor requirements, costs, and environmental implications. The comparison shows that 3D printing can reduce overall construction duration to approximately 1–1.5 months by eliminating formwork, minimizing curing times, and automating material placement. It also enables greater design flexibility, particularly for complex geometries, while generating less construction waste. Nevertheless, its adoption is currently constrained by limitations in material diversity, equipment scale, regulatory standards, and technical expertise. Besides, the implementation of 3D printing has limits on building heights and floors. Conversely, the reinforced concrete frame system remains widely used for large-scale and high-rise projects due to its proven structural performance, established codes, and material availability. Although it generally requires 5–6 months to complete, it demands more labor-intensive processes. The findings suggest that 3D printing holds significant potential for small to medium-scale buildings and rapid construction scenarios, especially where time efficiency and waste reduction are priorities. This comparative perspective offers practical insights for integrating digital fabrication into contemporary construction practice.

Kaynakça

  • [1] U. Yergün, “Batılılaşma dönemi mimarisinde yapım teknolojisindeki değişim ve gelişim”, Jan. 2002.
  • [2] K. Sümer Haydaraslan, “Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi,” Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi, vol. 3, no. 1, pp. 1–13, Jul. 2024, doi: 10.69560/cujast.1437235.
  • [3] B. Khoshnevis, “Automated construction by contour crafting - Related robotics and information technologies,” in Automation in Construction, Jan. 2004, pp. 5–19. doi: 10.1016/j.autcon.2003.08.012.
  • [4] S. Volpe, V. Sangiorgio, A. Petrella, A. Coppola, M. Notarnicola, and F. Fiorito, “Building envelope prefabricated with 3d printing technology,” Sustainability (Switzerland), vol. 13, no. 16, Aug. 2021, doi: 10.3390/su13168923.
  • [5] S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Jan. 01, 2018, Elsevier B.V. doi: 10.1016/j.mattod.2017.07.001.
  • [6] T. Uygunoğlu and S. Barlas Özgüven, “İnşaat mühendisliği 3d teknolojisinde kullanılan harçların reolojik özelliklerinin araştırılması,” 2019.
  • [7] A. Dasgupta and P. Dutta, “A Comprehensive Review on 3D Printing Technology: Current Applications and Challenges,” 2022. [Online]. Available: https://www.researchgate.net/publication/370816735
  • [8] “Tecla house.” Accessed: Jul. 16, 2025. [Online]. Available: https://en.wikipedia.org/wiki/Tecla_house
  • [9] R. García-Alvarado, G. Moroni-Orellana, and P. Banda-Pérez, “Architectural evaluation of 3d-printed buildings,” Jun. 01, 2021, MDPI AG. doi: 10.3390/buildings11060254.
  • [10] S. F. Iftekar, A. Aabid, A. Amir, and M. Baig, “Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review,” Jun. 01, 2023, MDPI. doi: 10.3390/polym15112519.
  • [11] V. Markin, V. N. Nerella, C. Schröfl, G. Guseynova, and V. Mechtcherine, “Material design and performance evaluation of foam concrete for digital fabrication,” Materials, vol. 12, no. 15, Aug. 2019, doi: 10.3390/ma12152433.
  • [12] Ç. Takva et al., “Applicability of 3D concrete printing technology in building construction with different architectural design decisions in housing,” Journal of Building Engineering, vol. 98, Dec. 2024, doi: 10.1016/j.jobe.2024.111257.
  • [13] S. Artuğ and M. Cem Altun, “3 boyutlu baskı teknolojisinin bina üretiminde kullanım olanaklarının güncel örnekler üzerinden incelenmesi,” 2019. [Online]. Available: https://www.researchgate.net/publication/334769749
  • [14] M. Attaran, “Additive Manufacturing: The Most Promising Technology to Alter the Supply Chain and Logistics,” Journal of Service Science and Management, vol. 10, no. 03, pp. 189–206, 2017, doi: 10.4236/jssm.2017.103017.
  • [15] J. Park, E. Jung, C. Jang, C. Oh, and K. N. Shin, “The GreenCement for 3D Printing in the Construction Industry,” Journal of Energy Engineering, 2020.
  • [16] S. Ö. Felek, “Mimari yapılarda 3 boyutlu yazıcıların kullanımı,” 2019.
  • [17] S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb, and T. Thorpe, “Developments in construction-scale additive manufacturing processes,” Autom Constr, vol. 21, no. 1, pp. 262–268, Jan. 2012, doi: 10.1016/j.autcon.2011.06.010.
  • [18] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, “Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,” Virtual Phys Prototyp, vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.
  • [19] S. Pessoa, A. S. Guimarães, S. S. Lucas, and N. Simões, “3D printing in the construction industry - A systematic review of the thermal performance in buildings,” May 01, 2021, Elsevier Ltd. doi: 10.1016/j.rser.2021.110794.
  • [20] C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, and P. Morel, “Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders,” Mater Des, vol. 100, pp. 102–109, Jun. 2016, doi: 10.1016/j.matdes.2016.03.097.
  • [21] Z. Y. İlerisoy et al., “The effectiveness of 3D concrete printing technology in architectural design: different corner-wall combinations in 3D printed elements and geometric form configurations in residential buildings,” Archit Sci Rev, 2025, doi: 10.1080/00038628.2025.2543003.
  • [22] A. E. Çerçevil, Y. C. Toklu, S. Y. Kandemir, and M. Ö. Yaylı, “3b baskı teknolojisi kullanarak yapı üretiminde son dönem yenilikler,” 2018.
  • [23] T. Uygunoğlu, S. Barlas Özgüven, and İ. Bekir Topçu, “3d teknolojisi ile yapı malzemesi üretimindeki gelişmeler,” 2019.
  • [24] T. Tabassum and A. Ahmad Mir, “A review of 3d printing technology-the future of sustainable construction,” in Materials Today: Proceedings, Elsevier Ltd, 2023, pp. 408–414. doi: 10.1016/j.matpr.2023.08.013.
  • [25] Ş. Kaplan and N. Coşgun, “3 Boyutlu (3D) Yazıcı Teknolojisinin Yapı Sektöründe Kullanımının Örnek Yapılar Üzerinden İncelenmesi,” in 11. Uluslararası Akademik Araştırmalar Kongresi (ICAR), 2023.
  • [26] R. A. Buswell, W. R. Leal de Silva, S. Z. Jones, and J. Dirrenberger, “3D printing using concrete extrusion: A roadmap for research,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.cemconres.2018.05.006.
  • [27] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Jun. 15, 2018, Elsevier Ltd. doi: 10.1016/j.compositesb.2018.02.012.
  • [28] J. Burger et al., “Eggshell Pavilion: a reinforced concrete structure fabricated using robotically 3D printed formwork,” Construction Robotics, vol. 7, no. 2, pp. 213–233, Jul. 2023, doi: 10.1007/s41693-023-00090-x.
  • [29] H. Hassan, E. Rodriguez-Ubinas, A. Al Tamimi, E. Trepci, A. Mansouri, and K. Almehairbi, “Towards innovative and sustainable buildings: A comprehensive review of 3D printing in construction,” Jul. 01, 2024, Elsevier B.V. doi: 10.1016/j.autcon.2024.105417. [30] S. Banihashemi, A. Akbarnezhad, M. Sheikhkhoshkar, H. Bril El Haouzi, and B. Rolfe, “3D printing in construction: sustainable technology for building industry,” 2025, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s40964-025-01314-y.
  • [31] B. Ghosh and S. Karmakar, “3D Printing Technology and Future of Construction: A Review,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755-1315/1326/1/012001.
  • [32] H. Chen, L. Guo, W. Zhu, and C. Li, “Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices,” Nov. 01, 2022, MDPI. doi: 10.3390/polym14214635.
  • [33] Q. Shahzad, M. Umair, and S. Waqar, “Bibliographic analysis on 3D printing in the building and construction industry: Printing systems, material properties, challenges, and future trends,” Sep. 01, 2022, Kare Publishing. doi: 10.47481/jscmt.1143239.
  • [34] B. Furet, P. Poullain, and S. Garnier, “3D printing for construction based on a complex wall of polymer-foam and concrete,” Aug. 01, 2019, Elsevier B.V. doi: 10.1016/j.addma.2019.04.002.
  • [35] A. H. Snijder, L. P. L. van der Linden, C. Goulas, C. Louter, and R. Nijsse, “The glass swing: a vector active structure made of glass struts and 3D-printed steel nodes,” Glass Structures and Engineering, vol. 5, no. 1, pp. 99–116, Mar. 2020, doi: 10.1007/s40940-019-00110-9.
  • [36] S. Huang, W. Xu, and Y. Li, “The impacts of fabrication systems on 3D concrete printing building forms,” Frontiers of Architectural Research, vol. 11, no. 4, pp. 653–669, Aug. 2022, doi: 10.1016/j.foar.2022.03.004.
  • [37] F. S. . Merritt and J. T. . Ricketts, Building design and construction handbook. McGraw-Hill, 2001.
  • [38] E. Kasapoğlu et al., Mimarlıkta Yapı Bilgisi. Akademisyen Kitabevi, 2024. doi: 10.37609/akya.3028.
  • [39] J. Yüzbaşi and H. R. Yerli, “Betonarme Yapıların Deprem Etkisi Altında Performans Analizlerinin Yapılması ve Güçlendirilmesi,” 2018.
  • [40] B. Das, “Conversion factors from english to si units,” 2011.
  • [41] H. Jamal, “Reinforced Concrete Building Elements.” Accessed: Jul. 11, 2025. [Online]. Available: https://www.aboutcivil.org/reinforced-concrete-building-elements.html#bot
  • [42] P. K. Mehta and P. J. M. Monteiro, Concrete. 2006.
  • [43] D. Banu, G. Asachi, and N. Ţăranu, “Article in Bulletin of the Polytechnic Institute of Jassy, CONSTRUCTIONS. ARCHITECTURE Section ·,” 2010. [Online]. Available: https://www.researchgate.net/publication/46174701
  • [44] M. A. Hossain, A. Zhumabekova, S. C. Paul, and J. R. Kim, “A review of 3D printing in construction and its impact on the labor market,” Oct. 02, 2020, MDPI. doi: 10.3390/su12208492.
  • [45] Ö. H. Bettemır and Ö. F. Bulak, “Scheduling, Management and Optimization of Construction Process,” Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, vol. 33, no. 6, pp. 12945–12986, 2022, doi: 10.18400/tekderg.981601.
  • [46] M. Darwish et al., “Design and Characteristics of a Single-Story Building Model Incorporating Waste,” Buildings, vol. 15, no. 2, Jan. 2025, doi: 10.3390/buildings15020177. [47] P. Wu, X. Zhao, J. H. Baller, and X. Wang, “Developing a conceptual framework to improve the implementation of 3D printing technology in the construction industry,” Archit Sci Rev, vol. 61, no. 3, pp. 133–142, May 2018, doi: 10.1080/00038628.2018.1450727.
  • [48] A. C. Arı, “3 Boyutlu Yazıcı Teknolojisiyle Üretilen Yapı Malzemeleri ve İnşaat Sektöründe Kullanımlarının İncelenmesi,” SOCIAL SCIENCES STUDIES, 2023.
  • [49] C. Ryan, “Traditional construction for a sustainable future”. Spon Press, 2011.
  • [50] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, “Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,” Virtual Phys Prototyp, vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.
  • [51] Ö. Sevim and K. M. AL-QUDAIH, “Construction technology by robotics and 3d printing robotik ve 3d baskı ile yapı teknolojisi,” 2022, doi: 10.15189/1308-8041.

“3B Baskı Teknolojisi ve Betonarme Çerçeve Sistemlerinin Karşılaştırılması: Keşifsel Bir Çalışma”

Yıl 2025, Cilt: 13 Sayı: 4, 589 - 605, 30.12.2025

Öz

Bu makale, bina inşaatı bağlamında 3D baskı teknolojisini geleneksel betonarme çerçeve sistemi ile karşılaştırmaktadır. Geniş bir literatür taraması ile her iki yöntemin teknik, malzeme ve zaman açısından özelliklerini incelemektedir. Her bir yaklaşımı tanımlayıcı bir şekilde değerlendirmek ve ölçmek için 150 m²'lik hayali bir tek katlı konut projesi oluşturulmuştur. Analiz; tasarım aşaması, inşaat, zaman çizelgeleri, işçilik gereksinimleri, maliyetler ve çevresel etkileri kapsamaktadır. 3D baskının kalıpçılığı ortadan kaldırarak, kürlenme sürelerini en aza indirerek ve malzeme yerleştirmeyi otomatikleştirerek toplam inşaat süresini yaklaşık 1-1,5 aya indirebileceğini görülmüştür. Ek olarak 3D baskı karmaşık geometriler için daha fazla tasarım esnekliği sağlarken, daha az inşaat atığı üretir. Bununla birlikte, malzeme çeşitliliği, ekipman ölçeği, düzenleyici standartlar ve teknik uzmanlık alanlarındaki sınırlamalar nedeniyle, şu anda yaygın olarak benimsenmesi kısıtlıdır. Ayrıca, 3D baskının uygulanması bina yükseklikleri ve kat sayıları açısından sınırlıdır. Buna karşılık, betonarme çerçeve sistemi, kanıtlanmış yapısal performansı, kullanılan standartları ve malzeme bulunabilirliği nedeniyle büyük ölçekli ve yüksek katlı projelerde yaygın olarak kullanılmaya devam etmektedir. Bulgular, 3D baskının özellikle zaman verimliliği ve atık azaltmanın öncelikli olduğu küçük ve orta ölçekli binalar ve hızlı inşaat senaryoları için önemli bir potansiyele sahip olduğunu göstermektedir. Bu karşılaştırmalı çalışma dijital entegrasyon ile yapılan üretimin çağdaş inşaat uygulamalarına entegre etmek için önemli bilgileri sunmaktadır.

Kaynakça

  • [1] U. Yergün, “Batılılaşma dönemi mimarisinde yapım teknolojisindeki değişim ve gelişim”, Jan. 2002.
  • [2] K. Sümer Haydaraslan, “Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi,” Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi, vol. 3, no. 1, pp. 1–13, Jul. 2024, doi: 10.69560/cujast.1437235.
  • [3] B. Khoshnevis, “Automated construction by contour crafting - Related robotics and information technologies,” in Automation in Construction, Jan. 2004, pp. 5–19. doi: 10.1016/j.autcon.2003.08.012.
  • [4] S. Volpe, V. Sangiorgio, A. Petrella, A. Coppola, M. Notarnicola, and F. Fiorito, “Building envelope prefabricated with 3d printing technology,” Sustainability (Switzerland), vol. 13, no. 16, Aug. 2021, doi: 10.3390/su13168923.
  • [5] S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Jan. 01, 2018, Elsevier B.V. doi: 10.1016/j.mattod.2017.07.001.
  • [6] T. Uygunoğlu and S. Barlas Özgüven, “İnşaat mühendisliği 3d teknolojisinde kullanılan harçların reolojik özelliklerinin araştırılması,” 2019.
  • [7] A. Dasgupta and P. Dutta, “A Comprehensive Review on 3D Printing Technology: Current Applications and Challenges,” 2022. [Online]. Available: https://www.researchgate.net/publication/370816735
  • [8] “Tecla house.” Accessed: Jul. 16, 2025. [Online]. Available: https://en.wikipedia.org/wiki/Tecla_house
  • [9] R. García-Alvarado, G. Moroni-Orellana, and P. Banda-Pérez, “Architectural evaluation of 3d-printed buildings,” Jun. 01, 2021, MDPI AG. doi: 10.3390/buildings11060254.
  • [10] S. F. Iftekar, A. Aabid, A. Amir, and M. Baig, “Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review,” Jun. 01, 2023, MDPI. doi: 10.3390/polym15112519.
  • [11] V. Markin, V. N. Nerella, C. Schröfl, G. Guseynova, and V. Mechtcherine, “Material design and performance evaluation of foam concrete for digital fabrication,” Materials, vol. 12, no. 15, Aug. 2019, doi: 10.3390/ma12152433.
  • [12] Ç. Takva et al., “Applicability of 3D concrete printing technology in building construction with different architectural design decisions in housing,” Journal of Building Engineering, vol. 98, Dec. 2024, doi: 10.1016/j.jobe.2024.111257.
  • [13] S. Artuğ and M. Cem Altun, “3 boyutlu baskı teknolojisinin bina üretiminde kullanım olanaklarının güncel örnekler üzerinden incelenmesi,” 2019. [Online]. Available: https://www.researchgate.net/publication/334769749
  • [14] M. Attaran, “Additive Manufacturing: The Most Promising Technology to Alter the Supply Chain and Logistics,” Journal of Service Science and Management, vol. 10, no. 03, pp. 189–206, 2017, doi: 10.4236/jssm.2017.103017.
  • [15] J. Park, E. Jung, C. Jang, C. Oh, and K. N. Shin, “The GreenCement for 3D Printing in the Construction Industry,” Journal of Energy Engineering, 2020.
  • [16] S. Ö. Felek, “Mimari yapılarda 3 boyutlu yazıcıların kullanımı,” 2019.
  • [17] S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb, and T. Thorpe, “Developments in construction-scale additive manufacturing processes,” Autom Constr, vol. 21, no. 1, pp. 262–268, Jan. 2012, doi: 10.1016/j.autcon.2011.06.010.
  • [18] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, “Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,” Virtual Phys Prototyp, vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.
  • [19] S. Pessoa, A. S. Guimarães, S. S. Lucas, and N. Simões, “3D printing in the construction industry - A systematic review of the thermal performance in buildings,” May 01, 2021, Elsevier Ltd. doi: 10.1016/j.rser.2021.110794.
  • [20] C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, and P. Morel, “Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders,” Mater Des, vol. 100, pp. 102–109, Jun. 2016, doi: 10.1016/j.matdes.2016.03.097.
  • [21] Z. Y. İlerisoy et al., “The effectiveness of 3D concrete printing technology in architectural design: different corner-wall combinations in 3D printed elements and geometric form configurations in residential buildings,” Archit Sci Rev, 2025, doi: 10.1080/00038628.2025.2543003.
  • [22] A. E. Çerçevil, Y. C. Toklu, S. Y. Kandemir, and M. Ö. Yaylı, “3b baskı teknolojisi kullanarak yapı üretiminde son dönem yenilikler,” 2018.
  • [23] T. Uygunoğlu, S. Barlas Özgüven, and İ. Bekir Topçu, “3d teknolojisi ile yapı malzemesi üretimindeki gelişmeler,” 2019.
  • [24] T. Tabassum and A. Ahmad Mir, “A review of 3d printing technology-the future of sustainable construction,” in Materials Today: Proceedings, Elsevier Ltd, 2023, pp. 408–414. doi: 10.1016/j.matpr.2023.08.013.
  • [25] Ş. Kaplan and N. Coşgun, “3 Boyutlu (3D) Yazıcı Teknolojisinin Yapı Sektöründe Kullanımının Örnek Yapılar Üzerinden İncelenmesi,” in 11. Uluslararası Akademik Araştırmalar Kongresi (ICAR), 2023.
  • [26] R. A. Buswell, W. R. Leal de Silva, S. Z. Jones, and J. Dirrenberger, “3D printing using concrete extrusion: A roadmap for research,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.cemconres.2018.05.006.
  • [27] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Jun. 15, 2018, Elsevier Ltd. doi: 10.1016/j.compositesb.2018.02.012.
  • [28] J. Burger et al., “Eggshell Pavilion: a reinforced concrete structure fabricated using robotically 3D printed formwork,” Construction Robotics, vol. 7, no. 2, pp. 213–233, Jul. 2023, doi: 10.1007/s41693-023-00090-x.
  • [29] H. Hassan, E. Rodriguez-Ubinas, A. Al Tamimi, E. Trepci, A. Mansouri, and K. Almehairbi, “Towards innovative and sustainable buildings: A comprehensive review of 3D printing in construction,” Jul. 01, 2024, Elsevier B.V. doi: 10.1016/j.autcon.2024.105417. [30] S. Banihashemi, A. Akbarnezhad, M. Sheikhkhoshkar, H. Bril El Haouzi, and B. Rolfe, “3D printing in construction: sustainable technology for building industry,” 2025, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s40964-025-01314-y.
  • [31] B. Ghosh and S. Karmakar, “3D Printing Technology and Future of Construction: A Review,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755-1315/1326/1/012001.
  • [32] H. Chen, L. Guo, W. Zhu, and C. Li, “Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices,” Nov. 01, 2022, MDPI. doi: 10.3390/polym14214635.
  • [33] Q. Shahzad, M. Umair, and S. Waqar, “Bibliographic analysis on 3D printing in the building and construction industry: Printing systems, material properties, challenges, and future trends,” Sep. 01, 2022, Kare Publishing. doi: 10.47481/jscmt.1143239.
  • [34] B. Furet, P. Poullain, and S. Garnier, “3D printing for construction based on a complex wall of polymer-foam and concrete,” Aug. 01, 2019, Elsevier B.V. doi: 10.1016/j.addma.2019.04.002.
  • [35] A. H. Snijder, L. P. L. van der Linden, C. Goulas, C. Louter, and R. Nijsse, “The glass swing: a vector active structure made of glass struts and 3D-printed steel nodes,” Glass Structures and Engineering, vol. 5, no. 1, pp. 99–116, Mar. 2020, doi: 10.1007/s40940-019-00110-9.
  • [36] S. Huang, W. Xu, and Y. Li, “The impacts of fabrication systems on 3D concrete printing building forms,” Frontiers of Architectural Research, vol. 11, no. 4, pp. 653–669, Aug. 2022, doi: 10.1016/j.foar.2022.03.004.
  • [37] F. S. . Merritt and J. T. . Ricketts, Building design and construction handbook. McGraw-Hill, 2001.
  • [38] E. Kasapoğlu et al., Mimarlıkta Yapı Bilgisi. Akademisyen Kitabevi, 2024. doi: 10.37609/akya.3028.
  • [39] J. Yüzbaşi and H. R. Yerli, “Betonarme Yapıların Deprem Etkisi Altında Performans Analizlerinin Yapılması ve Güçlendirilmesi,” 2018.
  • [40] B. Das, “Conversion factors from english to si units,” 2011.
  • [41] H. Jamal, “Reinforced Concrete Building Elements.” Accessed: Jul. 11, 2025. [Online]. Available: https://www.aboutcivil.org/reinforced-concrete-building-elements.html#bot
  • [42] P. K. Mehta and P. J. M. Monteiro, Concrete. 2006.
  • [43] D. Banu, G. Asachi, and N. Ţăranu, “Article in Bulletin of the Polytechnic Institute of Jassy, CONSTRUCTIONS. ARCHITECTURE Section ·,” 2010. [Online]. Available: https://www.researchgate.net/publication/46174701
  • [44] M. A. Hossain, A. Zhumabekova, S. C. Paul, and J. R. Kim, “A review of 3D printing in construction and its impact on the labor market,” Oct. 02, 2020, MDPI. doi: 10.3390/su12208492.
  • [45] Ö. H. Bettemır and Ö. F. Bulak, “Scheduling, Management and Optimization of Construction Process,” Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, vol. 33, no. 6, pp. 12945–12986, 2022, doi: 10.18400/tekderg.981601.
  • [46] M. Darwish et al., “Design and Characteristics of a Single-Story Building Model Incorporating Waste,” Buildings, vol. 15, no. 2, Jan. 2025, doi: 10.3390/buildings15020177. [47] P. Wu, X. Zhao, J. H. Baller, and X. Wang, “Developing a conceptual framework to improve the implementation of 3D printing technology in the construction industry,” Archit Sci Rev, vol. 61, no. 3, pp. 133–142, May 2018, doi: 10.1080/00038628.2018.1450727.
  • [48] A. C. Arı, “3 Boyutlu Yazıcı Teknolojisiyle Üretilen Yapı Malzemeleri ve İnşaat Sektöründe Kullanımlarının İncelenmesi,” SOCIAL SCIENCES STUDIES, 2023.
  • [49] C. Ryan, “Traditional construction for a sustainable future”. Spon Press, 2011.
  • [50] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, “Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,” Virtual Phys Prototyp, vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.
  • [51] Ö. Sevim and K. M. AL-QUDAIH, “Construction technology by robotics and 3d printing robotik ve 3d baskı ile yapı teknolojisi,” 2022, doi: 10.15189/1308-8041.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimari Bilim ve Teknoloji, Yapı ve İnşaatta Otomasyon ve Teknoloji
Bölüm Araştırma Makalesi
Yazarlar

Hatice Ceylan 0009-0001-1902-6783

Ekrem Bahadır Çalışkan 0000-0002-5258-2976

Gönderilme Tarihi 16 Ağustos 2025
Kabul Tarihi 4 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Ceylan, H., & Çalışkan, E. B. (2025). Comparison of 3D Printing Technology and Reinforced Concrete Frame Systems: An Exploratory Study. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 13(4), 589-605.