Araştırma Makalesi
BibTex RIS Kaynak Göster

Bilyalı Dövme Parametrelerinin AA7075 Alüminyum Alaşımının Yüzey Altı Özelliklerine Etkileri

Yıl 2018, , 741 - 752, 30.12.2018
https://doi.org/10.29109/gujsc.389828

Öz

Bilyalı
dövme işlemi özellikle otomotiv ve havacılık endüstrilerinde değişken
yüklemeler altında çalışan makine elemanlarının yorulma ömürlerinin
geliştirilmesi için yaygın olarak uygulanan önemli bir mekanik yüzey işleme
yöntemidir. Yorulma ömrünün geliştirilmesi; bilyalı dövme ile malzeme yüzey
altı mikroyapısı ve mekanik özelliklerinin iyileştirilerek çatlak oluşumunun
engellenmesi ve oluşan çatlakların ilerleme hızlarının yavaşlatılması ile
sağlanmaktadır. Bu çalışmada farklı bilyalı dövme parametreleri altında dövülen
AA7075 alüminyum alaşımının yüzey altı mikroyapısında ve mekanik özelliklerinde
meydana gelen değişimlerin incelenmesi amaçlanmıştır. Bilya boyutu ve bilya püskürtme
basıncı parametrelerinin yüzey altı sertlik değerlerine ve yüzey altı mikroyapısına
etkileri derinliğe bağlı olarak incelenmiştir. Bilyalı dövme deneyleri özel
olarak tasarlanan bilyalı dövme test sisteminde 0,1-0,3 mm ve 0,4-0,9 mm
çaplarında paslanmaz çelik bilyalar ile 2 ve 4 bar püskürtme basınçları altında
gerçekleştirilmiştir. Püskürtme basıncı ve bilya boyutunun artışı ile yüzey
altı sertlik değerleri belirgin bir şekilde iyileşmiş ve sertlik artışı
gözlenen bölgenin derinliği artmıştır. Püskürtme basıncının artışı ile her iki
bilya boyutunda da mikroyapısal değişime uğrayan bölgenin derinliği artış
göstermiştir. Yüksek basınçta büyük boyutlu partiküller ile dövülen numunelerde
plastik deformasyonun şiddeti artmış ve aşırı plastik deformasyona uğramış
bölgeler gözlenmiştir. Püskürtme basıncı ve bilya boyutu artışı nedeniyle
meydana gelen aşırı plastik deformasyon nedeniyle yüzeyde derin ve geniş
çukurcukların ve yüzeysel mikro çatlakların oluşumu belirlenmiştir. 

Kaynakça

  • [10] M.K. Kulekci, U. Esme, Critical analysis of processes and apparatus for industrial surface peening technologies. The International Journal of Advanced Manufacturing Technology, 74: 9-12 (2014) 1551-1565.
  • [11] C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, T.J. Eden, Effect of substrate surface roughening and cold spray coating on the fatigue life of AA2024 specimens. Materials & Design, 54 (2014) 212-221.
  • [12] X.-f. Sheng, Q.-x. Xia, X.-q. Cheng, L.-s. Lin, Residual stress field induced by shot peening based on random-shots for 7075 aluminum alloy. Transactions of Nonferrous Metals Society of China, 22 (2012) s261-s267.
  • [13] L. Xie, C. Jiang, W. Lu, The influence of shot peening on the surface properties of (TiB+TiC)/Ti–6Al–4V. Applied Surface Science, 280 (2013) 981-988.
  • [14] L. Trško, M. Guagliano, O. Bokůvka, F. Nový, Fatigue life of AW 7075 Aluminium Alloy after Severe Shot Peening Treatment with Different Intensities. Procedia Engineering, 74 (2014) 246-252.
  • [15] M. Ahmadi, B.M. Sadeghi, M. Irani, F. Rahimi, Finite element simulation of shot peening of an aluminum alloy considering hardening models. Russian Journal of Non-Ferrous Metals, 57: 6 (2017) 565-571.
  • [16] V.B. Nguyen, H.J. Poh, Y.-W. Zhang, Predicting shot peening coverage using multiphase computational fluid dynamics simulations. Powder Technology, 256 (2014) 100-112.
  • [17] O. Unal, R. Varol, Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening. Applied Surface Science, 290 (2014) 40-47.
  • [18] A.T. Vielma, V. Llaneza, F.J. Belzunce, Effect of coverage and double peening treatments on the fatigue life of a quenched and tempered structural steel. Surface and Coatings Technology, 249 (2014) 75-83.
  • [19] J. González, S. Bagherifard, M. Guagliano, I. Fernández Pariente, Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy. Engineering Fracture Mechanics, 185 (2017) 72-81.
  • [1] M. Mhaede, Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73. Materials & Design, 41 (2012) 61-66.
  • [20] D. Cecchin, C.L. Azanza Ricardo, M. D'Incau, M. Bandini, P. Scardi, Influence of Shot-Peening Parameters on the Sub-Surface Residual Stress Profiles in Al-7075 Alloy Components. Materials Science Forum, 768-769 (2013) 66-71.
  • [21] M. Marini, V. Fontanari, M. Bandini, M. Benedetti, Surface layer modifications of micro-shot-peened Al-7075-T651: Experiments and stochastic numerical simulations. Surface and Coatings Technology, 321 (2017) 265-278.
  • [22] L. Trško, M. Guagliano, O. Bokůvka, F. Nový, M. Jambor, Z. Florková, Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy. Journal of Materials Engineering and Performance, 26:6 (2017) 2784-2797.
  • [23] L. Xie, L. Wang, C. Jiang, W. Lu, The variations of microstructures and hardness of titanium matrix composite (TiB+TiC)/Ti–6Al–4V after shot peening. Surface and Coatings Technology, 244 (2014) 69-77.
  • [24] J. Milligan, M. Brochu, Cladding AA7075 with a cryomilled Al–12Si alloy using spark plasma sintering. Materials Science and Engineering: A, 578 (2013) 323-330.
  • [25] Y.C. Lin, Y.-Q. Jiang, X.-M. Chen, D.-X. Wen, H.-M. Zhou, Effect of creep-aging on precipitates of 7075 aluminum alloy. Materials Science and Engineering: A, 588 (2013) 347-356.
  • [26] U.M.R. Paturi, S.K.R. Narala, R.S. Pundir, Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy. Materials Science and Engineering: A, 605 (2014) 176-185.
  • [27] Y. Jin, P. Cai, W. Wen, H. Nagaumi, B. Xu, Y. Zhang, T. Zhai, The anisotropy of fatigue crack nucleation in an AA7075 T651 Al alloy plate. Materials Science and Engineering: A, 622 (2015) 7-15.
  • [28] B. Hu, I.M. Richardson, Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds. Materials Science and Engineering: A, 459:1-2 (2007) 94-100.
  • [29] B. Mishra, C. Mondal, R. Goyal, P. Ghosal, K.S. Kumar, V. Madhu, Plastic flow behavior of 7017 and 7055 aluminum alloys under different high strain rate test methods. Materials Science and Engineering: A, 612 (2014) 343-353.
  • [2] S. Mitrovic, D. Adamovic, F. Zivic, D. Dzunic, M. Pantic, Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Applied Surface Science, 290 (2014) 223-232.
  • [30] W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Fine-grained AA 7075 processed by different thermo-mechanical processings. Materials Science and Engineering: A, 618 (2014) 244-253.
  • [31] M. Taheri-Mandarjani, A. Zarei-Hanzaki, H.R. Abedi, Hot ductility behavior of an extruded 7075 aluminum alloy. Materials Science and Engineering: A, 637 (2015) 107-122.
  • [32] M. Bahrami, M. Farahmand Nikoo, M.K. Besharati Givi, Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Materials Science and Engineering: A, 626 (2015) 220-228.
  • [33] S. Bayazid, H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, A. Mirhaji, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. Materials Science and Engineering: A, 649 (2016) 293-300.
  • [34] E. Avcu, The influences of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy. Tribology International, 110 (2017) 173-184.
  • [35] K.T. Cho, K. Song, S.H. Oh, Y.-K. Lee, K.M. Lim, W.B. Lee, Surface hardening of aluminum alloy by shot peening treatment with Zn based ball. Materials Science and Engineering: A, 543 (2012) 44-49.
  • [36] S. Kikuchi, Y. Nakamura, K. Nambu, M. Ando, Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending. Materials Science and Engineering: A, 652 (2016) 279-286.
  • [37] Y.-S. Nam, Y.-I. Jeong, B.-C. Shin, J.-H. Byun, Enhancing surface layer properties of an aircraft aluminum alloy by shot peening using response surface methodology. Materials & Design, 83 (2015) 566-576.
  • [38] K. Oguri, Fatigue life enhancement of aluminum alloy for aircraft by Fine Particle Shot Peening (FPSP). Journal of Materials Processing Technology, 211: 8 (2011) 1395-1399.
  • [39] U. Zupanc, J. Grum, Surface Integrity of Shot Peened Aluminium Alloy 7075-T651. Strojniški vestnik – Journal of Mechanical Engineering, 57: 05 (2011) 379-384.
  • [3] B.K.C. Ganesh, W. Sha, N. Ramanaiah, A. Krishnaiah, Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design, 56 (2014) 480-486.
  • [40] H.-G. Brokmeier, M.C. Avalos, R.E. Bolmaro, E. Maawad, Surface Microstructure Modification in Square Extruded Al-Nb Powder Composites by Shot Peening. IOP Conference Series: Materials Science and Engineering, 63 (2014) 012015.
  • [41] X. Zhang, K. Liao, V. Ji, H. Chen, L. Hu, Effect of the shot peening on the deformation of Al alloy component. Surface Engineering, DOI 10.1080/02670844.2017.1380359 (2017) 1-8.
  • [42] H. Wang, X. Yuan, K. Wu, C. Xu, Y. Jiao, W. Ge, J. Luo, Effect of high energy shot-peening on the microstructure and mechanical properties of Al5052/Ti6Al4V lap joints. Journal of Materials Processing Technology, 255 (2018) 76-85.
  • [43] A.A. Ahmed, M. Mhaede, M. Basha, M. Wollmann, L. Wagner, The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel. Surface and Coatings Technology, 280 (2015) 347-358.
  • [44] E. Avcu, Surface properties of AA7075 aluminium alloy shot peened under different peening parameters. Acta Materialia Turcica, 1 (2017) 3-10.
  • [45] S.V. Komarov, S.E. Romankov, Mechanical metallization of alumina substrate through shot impact treatment. Journal of the European Ceramic Society, 34: 2 (2014) 391-399.
  • [46] M. Abdulstaar, M. Mhaede, M. Wollmann, L. Wagner, Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surface and Coatings Technology, 254 (2014) 244-251.
  • [47] J. Vázquez, C. Navarro, J. Domínguez, Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens. International Journal of Fatigue, 40 (2012) 143-153.
  • [48] C. Rodopoulos, Optimisation of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening—methodology, results and analysis. International Journal of Fatigue, 26: 8 (2004) 849-856.
  • [4] A. Gariépy, F. Bridier, M. Hoseini, P. Bocher, C. Perron, M. Lévesque, Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surface and Coatings Technology, 219 (2013) 15-30.
  • [5] S. Žagar, J. Grum, Surface Modification Analysis after Shot Peening of AA 7075 in Different States. Materials Science Forum, 768-769 (2013) 519-525.
  • [6] M. Benedetti, V. Fontanari, M. Bandini, E. Savio, High- and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys: The role of surface morphology. International Journal of Fatigue, 70 (2015) 451-462.
  • [7] A. Gariépy, S. Larose, C. Perron, P. Bocher, M. Lévesque, On the effect of the orientation of sheet rolling direction in shot peen forming. Journal of Materials Processing Technology, 213:6 (2013) 926-938.
  • [8] L. Trško, O. Bokůvka, F. Nový, M. Guagliano, Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel. Materials & Design, 57 (2014) 103-113.
  • [9] Y. Sun, Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel. Tribology International, 57 (2013) 67-75.
Yıl 2018, , 741 - 752, 30.12.2018
https://doi.org/10.29109/gujsc.389828

Öz

Kaynakça

  • [10] M.K. Kulekci, U. Esme, Critical analysis of processes and apparatus for industrial surface peening technologies. The International Journal of Advanced Manufacturing Technology, 74: 9-12 (2014) 1551-1565.
  • [11] C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, T.J. Eden, Effect of substrate surface roughening and cold spray coating on the fatigue life of AA2024 specimens. Materials & Design, 54 (2014) 212-221.
  • [12] X.-f. Sheng, Q.-x. Xia, X.-q. Cheng, L.-s. Lin, Residual stress field induced by shot peening based on random-shots for 7075 aluminum alloy. Transactions of Nonferrous Metals Society of China, 22 (2012) s261-s267.
  • [13] L. Xie, C. Jiang, W. Lu, The influence of shot peening on the surface properties of (TiB+TiC)/Ti–6Al–4V. Applied Surface Science, 280 (2013) 981-988.
  • [14] L. Trško, M. Guagliano, O. Bokůvka, F. Nový, Fatigue life of AW 7075 Aluminium Alloy after Severe Shot Peening Treatment with Different Intensities. Procedia Engineering, 74 (2014) 246-252.
  • [15] M. Ahmadi, B.M. Sadeghi, M. Irani, F. Rahimi, Finite element simulation of shot peening of an aluminum alloy considering hardening models. Russian Journal of Non-Ferrous Metals, 57: 6 (2017) 565-571.
  • [16] V.B. Nguyen, H.J. Poh, Y.-W. Zhang, Predicting shot peening coverage using multiphase computational fluid dynamics simulations. Powder Technology, 256 (2014) 100-112.
  • [17] O. Unal, R. Varol, Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening. Applied Surface Science, 290 (2014) 40-47.
  • [18] A.T. Vielma, V. Llaneza, F.J. Belzunce, Effect of coverage and double peening treatments on the fatigue life of a quenched and tempered structural steel. Surface and Coatings Technology, 249 (2014) 75-83.
  • [19] J. González, S. Bagherifard, M. Guagliano, I. Fernández Pariente, Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy. Engineering Fracture Mechanics, 185 (2017) 72-81.
  • [1] M. Mhaede, Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73. Materials & Design, 41 (2012) 61-66.
  • [20] D. Cecchin, C.L. Azanza Ricardo, M. D'Incau, M. Bandini, P. Scardi, Influence of Shot-Peening Parameters on the Sub-Surface Residual Stress Profiles in Al-7075 Alloy Components. Materials Science Forum, 768-769 (2013) 66-71.
  • [21] M. Marini, V. Fontanari, M. Bandini, M. Benedetti, Surface layer modifications of micro-shot-peened Al-7075-T651: Experiments and stochastic numerical simulations. Surface and Coatings Technology, 321 (2017) 265-278.
  • [22] L. Trško, M. Guagliano, O. Bokůvka, F. Nový, M. Jambor, Z. Florková, Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy. Journal of Materials Engineering and Performance, 26:6 (2017) 2784-2797.
  • [23] L. Xie, L. Wang, C. Jiang, W. Lu, The variations of microstructures and hardness of titanium matrix composite (TiB+TiC)/Ti–6Al–4V after shot peening. Surface and Coatings Technology, 244 (2014) 69-77.
  • [24] J. Milligan, M. Brochu, Cladding AA7075 with a cryomilled Al–12Si alloy using spark plasma sintering. Materials Science and Engineering: A, 578 (2013) 323-330.
  • [25] Y.C. Lin, Y.-Q. Jiang, X.-M. Chen, D.-X. Wen, H.-M. Zhou, Effect of creep-aging on precipitates of 7075 aluminum alloy. Materials Science and Engineering: A, 588 (2013) 347-356.
  • [26] U.M.R. Paturi, S.K.R. Narala, R.S. Pundir, Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy. Materials Science and Engineering: A, 605 (2014) 176-185.
  • [27] Y. Jin, P. Cai, W. Wen, H. Nagaumi, B. Xu, Y. Zhang, T. Zhai, The anisotropy of fatigue crack nucleation in an AA7075 T651 Al alloy plate. Materials Science and Engineering: A, 622 (2015) 7-15.
  • [28] B. Hu, I.M. Richardson, Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds. Materials Science and Engineering: A, 459:1-2 (2007) 94-100.
  • [29] B. Mishra, C. Mondal, R. Goyal, P. Ghosal, K.S. Kumar, V. Madhu, Plastic flow behavior of 7017 and 7055 aluminum alloys under different high strain rate test methods. Materials Science and Engineering: A, 612 (2014) 343-353.
  • [2] S. Mitrovic, D. Adamovic, F. Zivic, D. Dzunic, M. Pantic, Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Applied Surface Science, 290 (2014) 223-232.
  • [30] W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Fine-grained AA 7075 processed by different thermo-mechanical processings. Materials Science and Engineering: A, 618 (2014) 244-253.
  • [31] M. Taheri-Mandarjani, A. Zarei-Hanzaki, H.R. Abedi, Hot ductility behavior of an extruded 7075 aluminum alloy. Materials Science and Engineering: A, 637 (2015) 107-122.
  • [32] M. Bahrami, M. Farahmand Nikoo, M.K. Besharati Givi, Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Materials Science and Engineering: A, 626 (2015) 220-228.
  • [33] S. Bayazid, H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, A. Mirhaji, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. Materials Science and Engineering: A, 649 (2016) 293-300.
  • [34] E. Avcu, The influences of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy. Tribology International, 110 (2017) 173-184.
  • [35] K.T. Cho, K. Song, S.H. Oh, Y.-K. Lee, K.M. Lim, W.B. Lee, Surface hardening of aluminum alloy by shot peening treatment with Zn based ball. Materials Science and Engineering: A, 543 (2012) 44-49.
  • [36] S. Kikuchi, Y. Nakamura, K. Nambu, M. Ando, Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending. Materials Science and Engineering: A, 652 (2016) 279-286.
  • [37] Y.-S. Nam, Y.-I. Jeong, B.-C. Shin, J.-H. Byun, Enhancing surface layer properties of an aircraft aluminum alloy by shot peening using response surface methodology. Materials & Design, 83 (2015) 566-576.
  • [38] K. Oguri, Fatigue life enhancement of aluminum alloy for aircraft by Fine Particle Shot Peening (FPSP). Journal of Materials Processing Technology, 211: 8 (2011) 1395-1399.
  • [39] U. Zupanc, J. Grum, Surface Integrity of Shot Peened Aluminium Alloy 7075-T651. Strojniški vestnik – Journal of Mechanical Engineering, 57: 05 (2011) 379-384.
  • [3] B.K.C. Ganesh, W. Sha, N. Ramanaiah, A. Krishnaiah, Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design, 56 (2014) 480-486.
  • [40] H.-G. Brokmeier, M.C. Avalos, R.E. Bolmaro, E. Maawad, Surface Microstructure Modification in Square Extruded Al-Nb Powder Composites by Shot Peening. IOP Conference Series: Materials Science and Engineering, 63 (2014) 012015.
  • [41] X. Zhang, K. Liao, V. Ji, H. Chen, L. Hu, Effect of the shot peening on the deformation of Al alloy component. Surface Engineering, DOI 10.1080/02670844.2017.1380359 (2017) 1-8.
  • [42] H. Wang, X. Yuan, K. Wu, C. Xu, Y. Jiao, W. Ge, J. Luo, Effect of high energy shot-peening on the microstructure and mechanical properties of Al5052/Ti6Al4V lap joints. Journal of Materials Processing Technology, 255 (2018) 76-85.
  • [43] A.A. Ahmed, M. Mhaede, M. Basha, M. Wollmann, L. Wagner, The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel. Surface and Coatings Technology, 280 (2015) 347-358.
  • [44] E. Avcu, Surface properties of AA7075 aluminium alloy shot peened under different peening parameters. Acta Materialia Turcica, 1 (2017) 3-10.
  • [45] S.V. Komarov, S.E. Romankov, Mechanical metallization of alumina substrate through shot impact treatment. Journal of the European Ceramic Society, 34: 2 (2014) 391-399.
  • [46] M. Abdulstaar, M. Mhaede, M. Wollmann, L. Wagner, Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surface and Coatings Technology, 254 (2014) 244-251.
  • [47] J. Vázquez, C. Navarro, J. Domínguez, Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens. International Journal of Fatigue, 40 (2012) 143-153.
  • [48] C. Rodopoulos, Optimisation of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening—methodology, results and analysis. International Journal of Fatigue, 26: 8 (2004) 849-856.
  • [4] A. Gariépy, F. Bridier, M. Hoseini, P. Bocher, C. Perron, M. Lévesque, Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surface and Coatings Technology, 219 (2013) 15-30.
  • [5] S. Žagar, J. Grum, Surface Modification Analysis after Shot Peening of AA 7075 in Different States. Materials Science Forum, 768-769 (2013) 519-525.
  • [6] M. Benedetti, V. Fontanari, M. Bandini, E. Savio, High- and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys: The role of surface morphology. International Journal of Fatigue, 70 (2015) 451-462.
  • [7] A. Gariépy, S. Larose, C. Perron, P. Bocher, M. Lévesque, On the effect of the orientation of sheet rolling direction in shot peen forming. Journal of Materials Processing Technology, 213:6 (2013) 926-938.
  • [8] L. Trško, O. Bokůvka, F. Nový, M. Guagliano, Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel. Materials & Design, 57 (2014) 103-113.
  • [9] Y. Sun, Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel. Tribology International, 57 (2013) 67-75.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Egemen Avcu 0000-0002-3244-1316

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 3 Şubat 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Avcu, E. (2018). Bilyalı Dövme Parametrelerinin AA7075 Alüminyum Alaşımının Yüzey Altı Özelliklerine Etkileri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(4), 741-752. https://doi.org/10.29109/gujsc.389828

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526