Araştırma Makalesi
BibTex RIS Kaynak Göster

Al-Si3N4 Toz Metal Kompozit Malzeme Üretimi ve Aşınma Davranışının Araştırılması

Yıl 2019, , 776 - 787, 24.12.2019
https://doi.org/10.29109/gujsc.621116

Öz

Özet



Alüminyum ve alaşımları başta otomotiv ve
havacılık sektörü olmak üzere pek çok alanda tercih edilen metal ve alaşım
grubunu oluşturmaktadır.  Alüminyum
alaşımlarının üstün özellikleri yanında sertlik ve aşınma direnci gibi
özelliklerinin bazı uygulamalarda beklentilerin uzağında kalması alüminyum
matrisli kompozit malzeme üretimi çalışmalarını daha değerli ve gerekli
kılmaktadır. Bu çalışmada toz metalürjisi metodu ile üretilen α-Si3N4
içeren alüminyum matrisli kompozit malzemelerde takviye elemanı oranının
kompozitin aşınma davranışı üzerine etkilerinin belirlenmesi amaçlanmıştır.
Ağırlıkça %5, %10 ve %15 oranlarında α-Si3N4 içeren
karışım tozlar kalıp içerisinde 500 MPa basınç altında preslenerek 10 mm çapta
ve 15 mm boyda blok numuneler üretilmiştir. Daha sonra preslenen numuneler
atmosfer kontrollü tüp fırında 2 saat süreyle 650 °C sıcaklıkta
sinterlenmiştir. Toz metal kompozit parçaların yoğunluk ve sertlik ölçümleri sonrası
pin-on-disk metoduyla kuru kayma aşınma testleri yapılmıştır. Testler
TIRIBOMETER T10/20 aşındırma test cihazında ASTM G99-05’ göre yapılmıştır.
Aşındırma testleri 1,41 m/s kayma hızı ve 2000 m mesafede farklı yükler
(5-10-15 N) altında tekrarlanmıştır. Alınan aşınma test sonuçları aynı
şartlarda üretilen matris malzemeye göre değişik oranlarda α-Si3N4
takviyeli kompozitlerin daha iyi aşınma direncinde sahip olduğunu
göstermektedir. En yüksek aşınma direnci ve sertlik değerleri ağırlıkça % 15
silisyum nitrür içeren kompozit malzemede görülmüştür.

Kaynakça

  • KAYNAKLAR (REFERENCES)
  • [1] Rosso M. 2006, Ceramic and Metal Matrix Composites: Routes and Properties, Journal of Materials Processing Technology, 175: 364-375.
  • [2] Sahu P.S., Banchhor R., 2017. Effect of Different Reinforcement on Mechanical Properties of Aluminium Metal Matrix Composites, Res. J. Engineering Sci., Vol. 6 (7), 39-45.
  • [3] Mattli M.R., Matli R.R et all. 2019. Structural and Mechanical Properties of Amorphous Si3N4 Nanoparticles Reinforced Al Matrix Composites Prepared by Microwave Sintering, Ceramics, 2: 126–134.
  • [4] Mahajan G.V., Aher V.S. 2012. Composite Material: A Review over Current Development and Automotive Application, International Journal of Scientific and Research Publications, 2 (11), 1-5.
  • [5] Babalola P.O.,Bolu C.A., et all. 2014. Development of Aluminium Matrix Composites: A Review, Journal of Engineering and Technology Research, l (2), 1-11.[6] Ervina Efzan M.N., Siti Syazwani N., and Abdullah M.M.A.B. 2016. Fabrication Method of Aluminum Matrix Composite (Amcs): A Review, Key Engineering Materials, 700, 02-110.[7] Ramnath B.V., Elanchezhian C. 2014. Alumınıum Metal Matrıx Composıtes - A Revıew, Advanced Materials Science, 38: 55-60.[8] Manohar G., Dey A., Pandey K.M. and Maity S.R., 2019. Fabrication of metal matrix composites by powder metallurgy: A review, International Conference on Electrical, Electronics, Materials and Applied Science, 020041-1-8.[9] Thirumoorthy A, Arjunan T.V., Senthil Kumar K.L. 2018. Latest Research Development in Aluminum Matrix with Particulate Reinforcement Composites – A Review, Materials Today: Proceedings 5, 1657–1665.[10] Attar S., Nagaral M., et all. 2015. A Review on Particulate Reinforced Aluminum Metal Matrix Composites, Journal of Emerging Technologies and Innovative Research, 2 (2), 225-229.
  • [11] Bedir F., 2007. Characteristic properties of Al–Cu–SiCp and Al–Cu–B4Cp Composites Produced by Hot Pressing Method Under Nitrogen Atmosphere, Materials and Design, 28:1238-1244
  • [12] Kırmızı G., Arık H., Çinici H. 2019. Experimental Study on Mechanical and Ballistic Behaviours of Silicon Carbide Reinforced Functionally Graded Aluminum Foam Composites. Composites Part B, 164: 345-357.
  • [13] O’Donnell G., Looney L., 2001. Production of aluminium matrix composite components using conventional PM technology, Materials Science and Engineering A 303: 292-301.
  • [14] Kaczmar J.W., Pietrzak K., Wøosinski W., 2000. The Production and Application of Metal Matrix Composite Materials, Journal of Materials Processing Technology, 106: 58-67.
  • [15] Mahdavi S., Akhlaghi FR. 2011. Effect of the SiC Particle Size on The Dry Sliding Wear Behavior of Sic And SiC–Gr-Reinforced Al6061 Composites, J Mater Sci, 46:7883-7894.
  • [16] Sureshkumar P., Uvaraja V. 2018. Effect of Ceramic and Metallic Reinforcement on Mechanical, Corrosion, and Tribological Behavior of Aluminum Composite by Adopting Design of Experiment Through Taguchi Technique, 140: 1-11.
  • [17] Kumar M., Gupta R.K., Pandey A. 2018. A Review on Fabrication and Characteristics of Metal Matrix Composites Fabricated by Stir Casting, Conference Series: Materials Science and Engineering 377: 1-9.[18] Saravanan R., Vinod K., Tamilarasan T., 2015. Investıgatıon of Wear Behavıour of Al 6061 Alloy Reınforced Wıth SiC, Al2O3 and E Glass Fıber, International Journal of Scientific Engineering and Applied Science (IJSEAS),1(5), 430-434.
  • [19] Imran M., Anwar Khan A.R. 2019. Characterization of Al-7075 Metal Matrix Composites: A Review, J. Materials Research and Technology, 8(3): 3347–3356.[20] Ramesh B.T. 2014. Characterization of Al Based Nano composites Using Powder Metallurgy Technique, Internatıonal Journal of Research In Aeronautıcal and Mechanıcal Engıneerıng, Vol: 2, Issue 2, 131-147.
  • [21] William C., Harrigan Jr. Commercial Processing of Metal Matrix Composites, Materials Science and Engineering A, 244: 75-79.
  • [22] Ambigai R., Prabhu S. 2017. Optimization of Friction and Wear Behaviour of Al-Si3N4 Nano Composite and Al-Gr-Si3N4 Hybrid Composite Under Dry Sliding Conditions, Trans. Nonferrous Met. Soc. China 27, 986-997.
  • [23] Ul Haq M.I., Anand A. 2018. Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, (5), 1-12.
  • [24] Sharma P., Sharma S., and Khanduja D. 2017. Production and Characterization of AA6082-(Si3N4 + Gr) Stir Cast Hybrid Composites, Partıculate Scıence and Technology, 35 (2), 158-165.
  • [25] Monikandan V.V., Joseph M.A., Rajendrakumar P.K. 2016. Dry Sliding Wear Studies of Aluminum Matrix Hybrid Composites, Resource-Efficient Technologies 2, 12–S24.
  • [26] Ambigai R., Prabhu S. 2019. Fuzzy Logic Algorithm Based Optimization of The Tribological Behavior of Al-Gr-Si3N4 Hybrid Composite, Measurement, 146: 736–748.
  • [27] Tyagi A., Sharma D. 2018. Characterization of AA6082/Si3N4 Composites, 1st International Conference on New Frontiers in Engineering, Science & Technology, New Delhi, India, January 8-12.
  • [28] Sharma P., Sharma S., Khanduja D. 2015. Production and Some Properties of Si3N4 Reinforced Aluminium Alloy Composites, Journal of Asian Ceramic Societies 3, 352–359.
  • [29] Arık H., Semerci P., Kırmızı G. 2017. Sıcak Presleme ile Alüminyum Matrisli ve Al2O3 Takviyeli Toz Metal Kompozit Malzeme Üretimi ve Aşınma Davranışının Araştırılması, GU J Sci, Part C, 5(4): 87-97.
  • [30] Arik H., Orhun D.Z., 2018. Investigation of Dry Sliding Wear Behavior of Powder Metal (P/M) Materials Produced from Mixture of Fe-Cu-C Powders, GU J Sci, Part A, 5: 37-48.
  • [31] Arik H. 2008. Effect of Mechanical Alloying Process on Mechanical Properties of -Si3N4 Reinforced Aluminum-Based Composite Materials. Materials & Design, 29: 1865-1861.
  • [32] Ramesh B. T., Arun Kumar M. B., Swamy R.P. 2015. Dry Sliding Wear Test Conducted On Pin-On-Disk Testing Setup For Al6061-SiC Metal Matrix Composites Fabricated by Powder Metallurgy, International Journal of Innovative Science, Engineering & Technology, 2(6), 264-270.
  • [33] Lawrence O.O., Oluwaseyi O. T., and Samson O. A. 2017. The Dry Sliding Wear Behaviour of Aluminum Composites: A Review, The West Indian Journal of Engineering, 40(1), 17-23.
  • [34] Veeresh Kumar G.B., Rao C.S.P., Selvaraj N. 2012. Studies on Mechanical and Dry Sliding Wear of Al6061–SiC Composites, Composites: Part B, 43: 1185–1191.
  • [35] Rao R.N., Das S. 2010. Effect of Matrix Alloy and Influence of SiC Particle on the Sliding Wear Characteristics of Aluminium Alloy Composites, Materials and Design 31. 1200-1207.
  • [36] Ul Haq M.I., Anand A. 2018. Dry Sliding Friction and Wear Behavior of AA7075-Si3N4 Composite, Silicon, 10:1819-1829.
  • [37] Radhika N., Raghu R. 2015. Parametrıc Study of Dry Slıdıng Wear Behavıour of Functıonally Graded Al LM25/Si3N4 Composıte by Response Surface Methodology, Advanced Composites Letter, 24, (6), 130-136.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Tasarım ve Teknoloji
Yazarlar

Halil Arık 0000-0001-6521-7399

Yayımlanma Tarihi 24 Aralık 2019
Gönderilme Tarihi 17 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Arık, H. (2019). Al-Si3N4 Toz Metal Kompozit Malzeme Üretimi ve Aşınma Davranışının Araştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(4), 776-787. https://doi.org/10.29109/gujsc.621116

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526