Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 10 Sayı: 3, 439 - 454, 30.09.2022
https://doi.org/10.29109/gujsc.1122188

Öz

Destekleyen Kurum

Sakarya Üniversitesi

Kaynakça

  • [1] D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications, Polymers 11 (2019) 11 1-37.
  • [2] K.Kaware, M.Kotambkar, Low velocity impact response and influence of parameters to improve the damage resistance of composite structures/materials: a critical review, International Journal of Crashworthiness, (2021) 1-25.
  • [3] R. Bogenfeld, J. Kreikemeier, T. Wille, Review and benchmark study on the analysis of low-velocity impact on composite laminates, Engineering Failure Analysis, 86 (2018) 72-99.
  • [4] A.Katunin, A.W. Katunin, W. Danek, M. Wylezol, Modeling of a realistic barely visible impact damage in composite structures based on NDT techniques and numerical simulations, Composite Structures 267 (2021) 1-16.
  • [5] A.H. Balucha, O. Falcóa, J.L. Jiménez, B.H.A.H. Tijs, C.S. Lopes, An efficient numerical approach to the prediction of laminate tolerance to Barely Visible Impact Damage, Composite Structures 225 (2019) 1-13.
  • [6] M. Saeedifar, M.A Najafabadi, D. Zarouchas, H.H. Toudeshky, M. Jalalvand, Barely visible impact damage assessment in laminated composites using acoustic emission, Composites Part B 152 (2018) 180–192.
  • [7] S. Goossens, F. Berghmans, K. Muñoz, M. Jiménez, E. Karachalios, D.S. Castillo, T. Geernaert, A global assessment of barely visible impact damage for CFRP sub-components with FBG-based sensors, Composite Structures 272 (2021) 1-12.
  • [8] M.O.W. Richardson, M.J. Wisheart, Review of low-velocity impact properties of composite materials, Composites Part A: Applied Science and Manufacturing 27 (1996) 1123-1131.
  • [9] A.S. Al Omari, K.S. Al-Athel, A.F.M. Arif, F.A. Al-Sulaiman, Experimental and Computational Analysis of Low-Velocity Impact on Carbon- Glass- and Mixed-Fiber Composite Plates, Journal of Composites Science, 4 (2020) 1-19.
  • [10] C. Fragassa, A. Pavlovic, C. Santulli, Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids, Composites Part B: Engineering, 137, (2018) 247-259.
  • [11] M.A.Caminero, I.G. Moreno, G.P. Rodríguez, Damage resistance of carbonfibre reinforced epoxy laminatessubjected to low velocity impact: Effects of laminate thickness andply-stacking sequence, Polymer Testing, 63 (2017) 530-541.
  • [12] E.M. Soliman, M.P. Sheyka, M.R. Taha, Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes, International Journal of Impact Engineering, 47 (2012) 39-47.
  • [13] H. Ku, Y. M. Cheng, C. Snook, D. Baddeley, Drop Weight Impact Test Fracture of Vinyl Ester Composites: Micrographs of Pilot Study, Journal of COMPOSITE MATERIALS, 39 (2005) 1607-1620.
  • [14] B. S. Sugun, R.M.V.G.K. Rao, Low-velocity Impact Characterization of Glass, Carbon and Kevlar Composites Using Repeated Drop Tests, Journal of REINFORCED PLASTICS AND COMPOSITES, 23 (2004) 1583-1599.
  • [15] J.J. Andrew, S.M. Srinivasan, A. Arockiarajan, H.N. Dhakal, Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical, Composite Structures 224 (2019) 1-26.
  • [16] H. Liu, J. Liu, Y. Ding, J. Zhou, X. Kong, B.R.K. Blackman, A.J. Kinloch, B.G. Falzon, J.P. Dear, Effects of Impactor Geometry on the Low-Velocity, Impact Behaviour of Fibre-Reinforced Composites: An Experimental and Theoretical Investigation, Applied Composite Materials, 27 (2020) 533–553.
  • [17] C. Evci1, İ. Uyandıran, The Effect of the Impactor Diameter and Temperature on Low Velocity Impact Behavior of CFRP Laminates, Proceedings of the 6th International Advances in Applied Physics and Materials Science Congress & Exhibition, AIP Conference Proceedings, (2017) 1-10.
  • [18] J. Zhou, B. Liao, Y. Shi, Y. Zuo, H. Tuo, L. Jia, Low-velocity impact behavior and residual tensile strength of CFRP laminates, Composites Part B 161 (2019) 300-313.
  • [19] S. Seifoori, R. Izadi, G.H. Liaghat, A. M. Parrany, An experimental study on damage intensity in composite plates subjected to low-velocity impacts, Polymer Testing, 93 (2001) 1-14.
  • [20] J.A.A. Guerrero, J.P. Sánchez, J.L. Puente, D. Varas, Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates, Composite Structures, 133 (2015) 774- 781.
  • [21] B.M. Icten, B.G. Kıral, M.E. Deniz, Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates, Composites Part B: Engineering, 50 (2013) 325-332.
  • [22] T.S. Reddy, K. Mogulanna, K.G. Reddy, P.R.S. Reddy, V. Madhu, Effect of thickness on behaviour of E-glass/epoxy composite laminates under low velocity impact, procedia structural integrity, 14 (2019) 265-272.
  • [23] B. Liao, J. Zhouc, S. Ai, Y. Line, L. Xi, Y. Cao, D. Xiao, Comparison of laminate thickness on the low velocity impact behaviors for Z-pinned composite laminates, International journal of mechanical sciences 204 (2021) 1-11.
  • [24] G. Belingardi, R. Vadori, Influence of the laminate thickness in low velocity impact behavior of composite material plate, Composite structures 61 (2003) 27-38.
  • [25] L.S. Sutherland, C.G. Soares, Impact tests on woven-roving E-glass/polyester laminates, Composites Science and Technology 59 (1999) 1553-1567.
  • [26] A. Qiu, K. Fu, W. Lin, C. Zhao, Y. Tang, Modelling low-speed drop-weight impact on composite laminates, Materials and design 60 (2014) 520-531.
  • [27] A. Riccio, G. D. Felice, S. Saputo, F. Scaramuzzino, Stacking Sequence Effects on Damage Onset in Composite Laminate Subjected to Low Velocity Impact, Procedia engineering 88 (2014) 222-229.
  • [28] M. Quaresimin, M. Ricotta, L. Martello, S. Mian, Energy absorption in composite laminates under impact loading, Composites Part B 44 (2013) 133-140.
  • [29] G. Minak, D. Ghelli, Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates, Composite Part B 39 (2008) 962-972.
  • [30] U. Farooq, P. Myler, Finite element simulation of carbonfibre-reinforced compositelaminates subjected to low velocity impact using damage inducedstatic load-deflection methodology, Thin – walled structures 97 (2015) 63-73.
  • [31] A.Soto, E.V.González, P.Maimí, F.M. Escalera, J.R.S. Aja, E.Alvarez, Low velocity impact and compression after impact simulation of thin ply laminates, Composite Part A 109 (2018) 413-427.
  • [32] H.R. Wang, S.C. Long, X.Q. Zhang, X.H. Yao, Study on the delamination behavior of thick composite laminates under low-energy impact, Composite structures 184 (2018) 461-473.
  • [33] A. Gliszczynski, T. Kubiak, P. Rozylo, P. Jakubczak, J. Bieniaś, The response of laminated composite plates and profiles under low-velocity impact load, Composite structures 207 (2019) 1-12.
  • [34] M.A. Caminero, I.García-Moreno, G.P. Rodríguez, Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence, polymer testing 63 (2017) 530-541.
  • [35] J. Zhou, P. Wen, S. Wang, Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact, Composite structures 225 (2019) 1-13.
  • [36] T.G. Rı́o, R. Zaera, E.Barbero, C.Navarro, Damage in CFRPs due to low velocity impact at low temperature, Composites Part B: Engineering 36 (2005) 41-50.
  • [37] A. Kurşun, M. Şenel, H.M. Enginsoy, E. Bayraktar, Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling, composites Part B: 86 (2016) 143-151.
  • [38] ASTM D7136/D7136M-20 standard test method for measuring the damage resistance of a fiber reinforced polymer matrix composite to a drop weight impact event.
  • [39] R. Karakuzu, İ.C. Çalık, M.E. Deniz, Tabakalı Kompozit Plakların Darbe Davranışı Üzerine Deniz Suyu Etkisinin Araştırılması, Batman Üniversitesi Yaşam Bilimleri Dergisi, 7(2/2) (2017) 1-12.
  • [40] K.R. Ramakrishnan, S. Corn, N. L. Moigne, P. Ienny, P. Slangen, Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis, Composites Part A: Applied Science and Manufacturing, 140 (2021) 1-14.
  • [41] N. Razali, M.T.H Sultan, F. Mustapha, N. Yidris, M.R. Ishak, Impact damage on composite structures – a review, The International Journal Of Engineering And Science, 3(7) (2014) 8-20.
  • [42] H. Çallıoğlu, M Sayer, E Demir, Impact behavior of particles filled-glass/polyester composite plates, Polymer Composites, 32(7) (2011) 1125-1133.
  • [43] K.I Ismail, M.T.H Sultan, A.U.M. Shah, M. Jawaid, S.N.A. Safri, Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes, Composites Part B, 163 (2019), 455–463.
  • [44] T.S. Reddy, P.R.S. Reddy, V. Madhu, Response of E-glass/Epoxy and Dyneema® Composite Laminates Subjected to low and High Velocity Impact, Procedia Engineering, 173 (2017) 278-285.
  • [45] C. Atas, O. Sayman, An overall view on impact response of woven fabric composite plate, Composite Structures 82 (2008) 336–345.
  • [46] Sayer M. (2009). Hibrit Kompozitlerin Darbe Davranışlarının İncelenmesi, Doktora Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli.
  • [47] Ü. Esendemir, A.Y. Caner, Tabakalı Kompozit Malzemelerin Darbe Davranışının Deneysel Olarak İncelenmesi, Süleyman Demirel University Journal of Natural and Applied Sciences, 22 (1) 2018 207-215.
  • [48] H. Tuo, Z. Lu, X. Ma, C. Zhang, S. Chen, An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates, Composites Part B: Engineering, 167 (2019) 329-341.
  • [49] S. ZIKE, K. KALNINS, O. OZOLINS, M. KNITE, An Experimental and Numerical Study of Low Velocity Impact of Unsaturated Polyester/Glass Fibre Composite, MATERIALS SCIENCE, Vol. 17, No. 4. 2011]
  • [50] T. Shyr, Impact Resistance and Damage Characteristics of Composite Laminates Composite Structures 62 (11) 2003: pp. 193 – 203.
  • [51] A. Pandian, M.T.H. Sultan, U. Marimuthu, A .U.M. Shah, Low Velocity Impact Studies on Fibre-Reinforced Polymer Composites and Their Hybrids -Review, Encyclopedia of Renewable and Sustainable Materials, 5 (2020) 119-130.
  • [52] C. Evci, Thickness-dependent energy dissipation characteristics of laminated composites subjected to low velocity impact, Composite Structures, 133 (2015) 508-521.
  • [53] Y. Zhong, S. C. Joshi, Improved impact response of hygrothermally conditioned carbon/epoxy woven composites, Science and Engineering of Composite Materials, 23(6) (2016) 699–710.
  • [54] H. Cao, M. Ma, M. Jiang, L. Sun, L. Zhang, L. Jia, A. Tian, J. Liang, Experimental Investigation of Impactor Diameter Effect on Low-Velocity Impact Response of CFRP Laminates in a Drop-Weight Impact Event, Materials, 13(18) (2020) 1-16.
  • [55] B. Yang, Z. Wang, L. Zhou, J. Zhang, W. Liang, Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact, Composite Structures, 32 (2015) 464-476.
  • [56] Y. Wan, C. Diao, B. Yang, L. Zhang, S. Chen, GF/epoxy laminates embedded with wire nets: A way to improve the low-velocity impact resistance and energy absorption ability, Composite Structures, 202 (2018) 818-835.
  • [57] F. Sarasini, J. Tirillò, L. Ferrante, M. Valente, T. Valente, L. Lampani, P. Gaudenzi, S. Cioffi S. Iannace, L. Sorrentino, Drop-weight impact behaviour of woven hybrid basalt-carbon/epoxy composites, Composites: Part B 59 (2014) 204–220.
  • [58] F. Bensadoun, D. Depuydt, J. Baets, I. Verpoest, A.W. Vuure, Low velocity impact properties of flax composites, Composite Structures, 176 (2017) 933-944.

Impactor Diameter and Ply Number Effects on the Impact Behavior of Carbon Fiber Composite Laminates

Yıl 2022, Cilt: 10 Sayı: 3, 439 - 454, 30.09.2022
https://doi.org/10.29109/gujsc.1122188

Öz

As it is known, impact damage is a major mechanical phenomena for composite materials especially used in the aerospace structures. The factors affecting the impact behaviour of the composites depend on the impactor systems as well as the target material. In this study ply number and impactor geometry effects of carbon fiber reinforced epoxy composites were investigated by impact tests. In this context, drop weight impact tests were carried out at 6J, 12J and 24J energy levels by using hemispherical impactors with 10 mm and 20 mm diameters. Laminated composites were manufactured in 6, 10 and 14 plies with vacuum infusion method. The effects of laminate thickness, impactor diameter and impact energy effects on the force, velocity, absorbed energy and damage surfaces were investigated. It is observed that impactor geometries and velocities caused the different damage mechanisms in composites and impactors played an important role in determining the penetration and perforation behaviours of composites.

Kaynakça

  • [1] D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications, Polymers 11 (2019) 11 1-37.
  • [2] K.Kaware, M.Kotambkar, Low velocity impact response and influence of parameters to improve the damage resistance of composite structures/materials: a critical review, International Journal of Crashworthiness, (2021) 1-25.
  • [3] R. Bogenfeld, J. Kreikemeier, T. Wille, Review and benchmark study on the analysis of low-velocity impact on composite laminates, Engineering Failure Analysis, 86 (2018) 72-99.
  • [4] A.Katunin, A.W. Katunin, W. Danek, M. Wylezol, Modeling of a realistic barely visible impact damage in composite structures based on NDT techniques and numerical simulations, Composite Structures 267 (2021) 1-16.
  • [5] A.H. Balucha, O. Falcóa, J.L. Jiménez, B.H.A.H. Tijs, C.S. Lopes, An efficient numerical approach to the prediction of laminate tolerance to Barely Visible Impact Damage, Composite Structures 225 (2019) 1-13.
  • [6] M. Saeedifar, M.A Najafabadi, D. Zarouchas, H.H. Toudeshky, M. Jalalvand, Barely visible impact damage assessment in laminated composites using acoustic emission, Composites Part B 152 (2018) 180–192.
  • [7] S. Goossens, F. Berghmans, K. Muñoz, M. Jiménez, E. Karachalios, D.S. Castillo, T. Geernaert, A global assessment of barely visible impact damage for CFRP sub-components with FBG-based sensors, Composite Structures 272 (2021) 1-12.
  • [8] M.O.W. Richardson, M.J. Wisheart, Review of low-velocity impact properties of composite materials, Composites Part A: Applied Science and Manufacturing 27 (1996) 1123-1131.
  • [9] A.S. Al Omari, K.S. Al-Athel, A.F.M. Arif, F.A. Al-Sulaiman, Experimental and Computational Analysis of Low-Velocity Impact on Carbon- Glass- and Mixed-Fiber Composite Plates, Journal of Composites Science, 4 (2020) 1-19.
  • [10] C. Fragassa, A. Pavlovic, C. Santulli, Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids, Composites Part B: Engineering, 137, (2018) 247-259.
  • [11] M.A.Caminero, I.G. Moreno, G.P. Rodríguez, Damage resistance of carbonfibre reinforced epoxy laminatessubjected to low velocity impact: Effects of laminate thickness andply-stacking sequence, Polymer Testing, 63 (2017) 530-541.
  • [12] E.M. Soliman, M.P. Sheyka, M.R. Taha, Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes, International Journal of Impact Engineering, 47 (2012) 39-47.
  • [13] H. Ku, Y. M. Cheng, C. Snook, D. Baddeley, Drop Weight Impact Test Fracture of Vinyl Ester Composites: Micrographs of Pilot Study, Journal of COMPOSITE MATERIALS, 39 (2005) 1607-1620.
  • [14] B. S. Sugun, R.M.V.G.K. Rao, Low-velocity Impact Characterization of Glass, Carbon and Kevlar Composites Using Repeated Drop Tests, Journal of REINFORCED PLASTICS AND COMPOSITES, 23 (2004) 1583-1599.
  • [15] J.J. Andrew, S.M. Srinivasan, A. Arockiarajan, H.N. Dhakal, Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical, Composite Structures 224 (2019) 1-26.
  • [16] H. Liu, J. Liu, Y. Ding, J. Zhou, X. Kong, B.R.K. Blackman, A.J. Kinloch, B.G. Falzon, J.P. Dear, Effects of Impactor Geometry on the Low-Velocity, Impact Behaviour of Fibre-Reinforced Composites: An Experimental and Theoretical Investigation, Applied Composite Materials, 27 (2020) 533–553.
  • [17] C. Evci1, İ. Uyandıran, The Effect of the Impactor Diameter and Temperature on Low Velocity Impact Behavior of CFRP Laminates, Proceedings of the 6th International Advances in Applied Physics and Materials Science Congress & Exhibition, AIP Conference Proceedings, (2017) 1-10.
  • [18] J. Zhou, B. Liao, Y. Shi, Y. Zuo, H. Tuo, L. Jia, Low-velocity impact behavior and residual tensile strength of CFRP laminates, Composites Part B 161 (2019) 300-313.
  • [19] S. Seifoori, R. Izadi, G.H. Liaghat, A. M. Parrany, An experimental study on damage intensity in composite plates subjected to low-velocity impacts, Polymer Testing, 93 (2001) 1-14.
  • [20] J.A.A. Guerrero, J.P. Sánchez, J.L. Puente, D. Varas, Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates, Composite Structures, 133 (2015) 774- 781.
  • [21] B.M. Icten, B.G. Kıral, M.E. Deniz, Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates, Composites Part B: Engineering, 50 (2013) 325-332.
  • [22] T.S. Reddy, K. Mogulanna, K.G. Reddy, P.R.S. Reddy, V. Madhu, Effect of thickness on behaviour of E-glass/epoxy composite laminates under low velocity impact, procedia structural integrity, 14 (2019) 265-272.
  • [23] B. Liao, J. Zhouc, S. Ai, Y. Line, L. Xi, Y. Cao, D. Xiao, Comparison of laminate thickness on the low velocity impact behaviors for Z-pinned composite laminates, International journal of mechanical sciences 204 (2021) 1-11.
  • [24] G. Belingardi, R. Vadori, Influence of the laminate thickness in low velocity impact behavior of composite material plate, Composite structures 61 (2003) 27-38.
  • [25] L.S. Sutherland, C.G. Soares, Impact tests on woven-roving E-glass/polyester laminates, Composites Science and Technology 59 (1999) 1553-1567.
  • [26] A. Qiu, K. Fu, W. Lin, C. Zhao, Y. Tang, Modelling low-speed drop-weight impact on composite laminates, Materials and design 60 (2014) 520-531.
  • [27] A. Riccio, G. D. Felice, S. Saputo, F. Scaramuzzino, Stacking Sequence Effects on Damage Onset in Composite Laminate Subjected to Low Velocity Impact, Procedia engineering 88 (2014) 222-229.
  • [28] M. Quaresimin, M. Ricotta, L. Martello, S. Mian, Energy absorption in composite laminates under impact loading, Composites Part B 44 (2013) 133-140.
  • [29] G. Minak, D. Ghelli, Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates, Composite Part B 39 (2008) 962-972.
  • [30] U. Farooq, P. Myler, Finite element simulation of carbonfibre-reinforced compositelaminates subjected to low velocity impact using damage inducedstatic load-deflection methodology, Thin – walled structures 97 (2015) 63-73.
  • [31] A.Soto, E.V.González, P.Maimí, F.M. Escalera, J.R.S. Aja, E.Alvarez, Low velocity impact and compression after impact simulation of thin ply laminates, Composite Part A 109 (2018) 413-427.
  • [32] H.R. Wang, S.C. Long, X.Q. Zhang, X.H. Yao, Study on the delamination behavior of thick composite laminates under low-energy impact, Composite structures 184 (2018) 461-473.
  • [33] A. Gliszczynski, T. Kubiak, P. Rozylo, P. Jakubczak, J. Bieniaś, The response of laminated composite plates and profiles under low-velocity impact load, Composite structures 207 (2019) 1-12.
  • [34] M.A. Caminero, I.García-Moreno, G.P. Rodríguez, Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence, polymer testing 63 (2017) 530-541.
  • [35] J. Zhou, P. Wen, S. Wang, Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact, Composite structures 225 (2019) 1-13.
  • [36] T.G. Rı́o, R. Zaera, E.Barbero, C.Navarro, Damage in CFRPs due to low velocity impact at low temperature, Composites Part B: Engineering 36 (2005) 41-50.
  • [37] A. Kurşun, M. Şenel, H.M. Enginsoy, E. Bayraktar, Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling, composites Part B: 86 (2016) 143-151.
  • [38] ASTM D7136/D7136M-20 standard test method for measuring the damage resistance of a fiber reinforced polymer matrix composite to a drop weight impact event.
  • [39] R. Karakuzu, İ.C. Çalık, M.E. Deniz, Tabakalı Kompozit Plakların Darbe Davranışı Üzerine Deniz Suyu Etkisinin Araştırılması, Batman Üniversitesi Yaşam Bilimleri Dergisi, 7(2/2) (2017) 1-12.
  • [40] K.R. Ramakrishnan, S. Corn, N. L. Moigne, P. Ienny, P. Slangen, Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis, Composites Part A: Applied Science and Manufacturing, 140 (2021) 1-14.
  • [41] N. Razali, M.T.H Sultan, F. Mustapha, N. Yidris, M.R. Ishak, Impact damage on composite structures – a review, The International Journal Of Engineering And Science, 3(7) (2014) 8-20.
  • [42] H. Çallıoğlu, M Sayer, E Demir, Impact behavior of particles filled-glass/polyester composite plates, Polymer Composites, 32(7) (2011) 1125-1133.
  • [43] K.I Ismail, M.T.H Sultan, A.U.M. Shah, M. Jawaid, S.N.A. Safri, Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes, Composites Part B, 163 (2019), 455–463.
  • [44] T.S. Reddy, P.R.S. Reddy, V. Madhu, Response of E-glass/Epoxy and Dyneema® Composite Laminates Subjected to low and High Velocity Impact, Procedia Engineering, 173 (2017) 278-285.
  • [45] C. Atas, O. Sayman, An overall view on impact response of woven fabric composite plate, Composite Structures 82 (2008) 336–345.
  • [46] Sayer M. (2009). Hibrit Kompozitlerin Darbe Davranışlarının İncelenmesi, Doktora Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli.
  • [47] Ü. Esendemir, A.Y. Caner, Tabakalı Kompozit Malzemelerin Darbe Davranışının Deneysel Olarak İncelenmesi, Süleyman Demirel University Journal of Natural and Applied Sciences, 22 (1) 2018 207-215.
  • [48] H. Tuo, Z. Lu, X. Ma, C. Zhang, S. Chen, An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates, Composites Part B: Engineering, 167 (2019) 329-341.
  • [49] S. ZIKE, K. KALNINS, O. OZOLINS, M. KNITE, An Experimental and Numerical Study of Low Velocity Impact of Unsaturated Polyester/Glass Fibre Composite, MATERIALS SCIENCE, Vol. 17, No. 4. 2011]
  • [50] T. Shyr, Impact Resistance and Damage Characteristics of Composite Laminates Composite Structures 62 (11) 2003: pp. 193 – 203.
  • [51] A. Pandian, M.T.H. Sultan, U. Marimuthu, A .U.M. Shah, Low Velocity Impact Studies on Fibre-Reinforced Polymer Composites and Their Hybrids -Review, Encyclopedia of Renewable and Sustainable Materials, 5 (2020) 119-130.
  • [52] C. Evci, Thickness-dependent energy dissipation characteristics of laminated composites subjected to low velocity impact, Composite Structures, 133 (2015) 508-521.
  • [53] Y. Zhong, S. C. Joshi, Improved impact response of hygrothermally conditioned carbon/epoxy woven composites, Science and Engineering of Composite Materials, 23(6) (2016) 699–710.
  • [54] H. Cao, M. Ma, M. Jiang, L. Sun, L. Zhang, L. Jia, A. Tian, J. Liang, Experimental Investigation of Impactor Diameter Effect on Low-Velocity Impact Response of CFRP Laminates in a Drop-Weight Impact Event, Materials, 13(18) (2020) 1-16.
  • [55] B. Yang, Z. Wang, L. Zhou, J. Zhang, W. Liang, Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact, Composite Structures, 32 (2015) 464-476.
  • [56] Y. Wan, C. Diao, B. Yang, L. Zhang, S. Chen, GF/epoxy laminates embedded with wire nets: A way to improve the low-velocity impact resistance and energy absorption ability, Composite Structures, 202 (2018) 818-835.
  • [57] F. Sarasini, J. Tirillò, L. Ferrante, M. Valente, T. Valente, L. Lampani, P. Gaudenzi, S. Cioffi S. Iannace, L. Sorrentino, Drop-weight impact behaviour of woven hybrid basalt-carbon/epoxy composites, Composites: Part B 59 (2014) 204–220.
  • [58] F. Bensadoun, D. Depuydt, J. Baets, I. Verpoest, A.W. Vuure, Low velocity impact properties of flax composites, Composite Structures, 176 (2017) 933-944.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Mehmet İskender Özsoy 0000-0001-6777-4818

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 27 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 3

Kaynak Göster

APA Özsoy, M. İ. (2022). Impactor Diameter and Ply Number Effects on the Impact Behavior of Carbon Fiber Composite Laminates. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(3), 439-454. https://doi.org/10.29109/gujsc.1122188

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526