Araştırma Makalesi
BibTex RIS Kaynak Göster

Atomik Difüzyon Eklemeli İmalat Yönteminde, D2 ve 17-4 PH Bimetalik Malzeme Üretimi ve Mekanik Özelliklerinin İncelenmesi

Yıl 2025, Cilt: 13 Sayı: 2, 488 - 498, 30.06.2025
https://doi.org/10.29109/gujsc.1662944

Öz

Yapılan çalışmada, Markforged marka Metal X cihazı kullanılarak 17-4 paslanmaz çeliği ve D2 takım çeliğini bimetalik malzeme üretimine odaklanılmıştır. Özellikle kullanılan malzemelerin farklı fiziksel ve mekanik özelliklere sahip olmalarına rağmen, farklı filament kullanımı sayesinde bimetal üretiminin ve arayüzey davranışı üzerine çalışmalar gerçekleştirilmiştir. Silindirik geometride tasarlanan numune, katman katman ekstrüzyon kullanılarak basılmış, ardından ADAM (Atomik Difüzyon Katkı Üretimi) metodolojisine göre bir bağlayıcı giderme ve sinterleme işlemi gerçekleştirilmiştir. Özellikle arayüzey uyumu sağlamak ve yığılmayı engellemek için numune dikey pozisyonda üretim safhalarından geçirilmiştir. Üretimi gerçekleştirilen numunenin yoğunluk, sertlik, mikroyapı özellikleri incelenmiştir. Elde edilen sonuçlara göre Metal X cihazı kullanılarak bimetal ve hibrit malzeme üretimi gerçekleştirilebilmektedir.

Proje Numarası

FBG-2022-7860

Kaynakça

  • [1] Hull, C. W. (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed.
  • [2] Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.
  • [3] Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 46, 10918-10928.
  • [4] Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
  • [5] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • [6] Markforged. (2023). Metal X system datasheet. Retrieved from https://markforged.com
  • [7] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in materials science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001
  • [8] Liu, Y., Jiang, D., & Ning, F. (2025). Sintering Mechanisms in Metal Extrusion-based Sintering-assisted Additive Manufacturing: State-of-the-Art and Perspectives. Journal of Manufacturing Science and Engineering, 1-70.. https://doi.org/10.1115/1.4068066
  • [9] Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1-16. https://doi.org/10.1016/j.mser.2018.04.001
  • [10] Tammas-Williams, S., & Withers, P. J. (2016). The application of additive manufacturing in the aerospace sector: A review. Materials Science and Technology, 32(8), 641–648. https://doi.org/10.1179/1743284715Y.0000000078
  • [11] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [12] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [13] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [14] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [15] Wieczorek, L., Katzwinkel, T., Blüm, M., Löwer, M., & Röttger, A. (2022). Supersolidus Liquid Phase Sintering and Heat Treatment on Atomic Diffusion Additive Manufacturing Produced Ledeburitic Cold Work Tool Steel. HTM Journal of Heat Treatment and Materials, 77(4), 269-283. https://doi.org/10.1515/htm-2022-1019
  • [16] Zou, J., Grosdidier, T., Zhang, K., & Dong, C. (2006). Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel. Acta Materialia, 54(20), 5409-5419. https://doi.org/10.1016/j.actamat.2006.05.053
  • [17] Sabooni, S., Chabok, A., Feng, S. C., Blaauw, H., Pijper, T. C., Yang, H. J., & Pei, Y. T. (2021). Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Additive Manufacturing, 46, 102176. https://doi.org/10.1016/j.addma.2021.102176
  • [18] Rodriguez, J., Zuriarrain, A., Madariaga, A., Arrazola, P. J., Dominguez, E., Fraile, I., & Soler, D. (2023). Mechanical Properties and Fatigue Performance of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing Technology. Journal of Manufacturing and Materials Processing, 7(5), 172. https://doi.org/10.3390/jmmp7050172
  • [19] Jacob, J., Pejak Simunec, D., Kandjani, A. E. Z., Trinchi, A., & Ippolito, S. (2024). A review of fused filament fabrication of metal parts (Metal FFF): Current developments and future challenges. Technologies, 12(12), 267. https://www.mdpi.com/2227-7080/12/12/267
  • [20] Reddy, V. V., Valli, P. M., & Kumar, A. (2015). Influence of process parameters on characteristics of electrical discharge machining of PH17-4 stainless steel. Journal of Advanced Manufacturing Technology, 9(3), 215–224. https://doi.org/10.1142/S0219686715500122
  • [21] Michla, J.R.J., Rajkumar, C.R. Surface Microstructure Evolution of Additively Manufactured 17-4 PH Stainless Steel by Nitroxy-Quenching Polishing Quenching Process. J. of Materi Eng and Perform (2025). https://doi.org/10.1007/s11665-025-10650-7
  • [22] Gholipour, A., Shamanian, M., & Ashrafizadeh, F. (2011). Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel. Journal of Alloys and Compounds, 509(14), 4905-4909. https://doi.org/10.1016/j.jallcom.2010.09.216
  • [23] Dong D, Wang J, Chen C, Tang X, Ye Y, Ren Z, Yin S, Yuan Z, Liu M, Zhou K. Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel. Micromachines. 2023; 14(4):871. https://doi.org/10.3390/mi14040871
  • [24] Michla JRJ, Rajkumar CR. Corrosion behaviour of nitroxy-QPQ additively manufactured 17-4 PH steel on marine and nuclear reactor components. Surface Engineering. 2024;40(11-12):1113-1120. doi:10.1177/02670844241287344

Production of D2 and 17-4 PH Bimetallic Materials and Investigation of Their Mechanical Properties in Atomic Diffusion Additive Manufacturing Method

Yıl 2025, Cilt: 13 Sayı: 2, 488 - 498, 30.06.2025
https://doi.org/10.29109/gujsc.1662944

Öz

The study focused on the production of bimetallic material from 17-4 stainless steel and D2 tool steel using the Markforged brand Metal X device. In particular, despite the different physical and mechanical properties of the materials used, studies were carried out on the production of bimetal and the interfacial behavior thanks to the use of different filaments. The sample designed in cylindrical geometry was printed using layer-by-layer extrusion. Then, a debinding and sintering process was performed according to the ADAM (Atomic Diffusion Additive Manufacturing) methodology. In particular, the sample was passed through the production stages in a vertical position to ensure interface compatibility and prevent agglomeration. The produced sample's density, hardness, and microstructure properties were examined. According to the results, bimetal and hybrid material production can be carried out using the Metal X device.

Destekleyen Kurum

Gazi University

Proje Numarası

FBG-2022-7860

Teşekkür

Gazi University BAP

Kaynakça

  • [1] Hull, C. W. (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed.
  • [2] Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.
  • [3] Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 46, 10918-10928.
  • [4] Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
  • [5] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • [6] Markforged. (2023). Metal X system datasheet. Retrieved from https://markforged.com
  • [7] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in materials science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001
  • [8] Liu, Y., Jiang, D., & Ning, F. (2025). Sintering Mechanisms in Metal Extrusion-based Sintering-assisted Additive Manufacturing: State-of-the-Art and Perspectives. Journal of Manufacturing Science and Engineering, 1-70.. https://doi.org/10.1115/1.4068066
  • [9] Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1-16. https://doi.org/10.1016/j.mser.2018.04.001
  • [10] Tammas-Williams, S., & Withers, P. J. (2016). The application of additive manufacturing in the aerospace sector: A review. Materials Science and Technology, 32(8), 641–648. https://doi.org/10.1179/1743284715Y.0000000078
  • [11] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [12] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [13] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [14] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [15] Wieczorek, L., Katzwinkel, T., Blüm, M., Löwer, M., & Röttger, A. (2022). Supersolidus Liquid Phase Sintering and Heat Treatment on Atomic Diffusion Additive Manufacturing Produced Ledeburitic Cold Work Tool Steel. HTM Journal of Heat Treatment and Materials, 77(4), 269-283. https://doi.org/10.1515/htm-2022-1019
  • [16] Zou, J., Grosdidier, T., Zhang, K., & Dong, C. (2006). Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel. Acta Materialia, 54(20), 5409-5419. https://doi.org/10.1016/j.actamat.2006.05.053
  • [17] Sabooni, S., Chabok, A., Feng, S. C., Blaauw, H., Pijper, T. C., Yang, H. J., & Pei, Y. T. (2021). Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Additive Manufacturing, 46, 102176. https://doi.org/10.1016/j.addma.2021.102176
  • [18] Rodriguez, J., Zuriarrain, A., Madariaga, A., Arrazola, P. J., Dominguez, E., Fraile, I., & Soler, D. (2023). Mechanical Properties and Fatigue Performance of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing Technology. Journal of Manufacturing and Materials Processing, 7(5), 172. https://doi.org/10.3390/jmmp7050172
  • [19] Jacob, J., Pejak Simunec, D., Kandjani, A. E. Z., Trinchi, A., & Ippolito, S. (2024). A review of fused filament fabrication of metal parts (Metal FFF): Current developments and future challenges. Technologies, 12(12), 267. https://www.mdpi.com/2227-7080/12/12/267
  • [20] Reddy, V. V., Valli, P. M., & Kumar, A. (2015). Influence of process parameters on characteristics of electrical discharge machining of PH17-4 stainless steel. Journal of Advanced Manufacturing Technology, 9(3), 215–224. https://doi.org/10.1142/S0219686715500122
  • [21] Michla, J.R.J., Rajkumar, C.R. Surface Microstructure Evolution of Additively Manufactured 17-4 PH Stainless Steel by Nitroxy-Quenching Polishing Quenching Process. J. of Materi Eng and Perform (2025). https://doi.org/10.1007/s11665-025-10650-7
  • [22] Gholipour, A., Shamanian, M., & Ashrafizadeh, F. (2011). Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel. Journal of Alloys and Compounds, 509(14), 4905-4909. https://doi.org/10.1016/j.jallcom.2010.09.216
  • [23] Dong D, Wang J, Chen C, Tang X, Ye Y, Ren Z, Yin S, Yuan Z, Liu M, Zhou K. Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel. Micromachines. 2023; 14(4):871. https://doi.org/10.3390/mi14040871
  • [24] Michla JRJ, Rajkumar CR. Corrosion behaviour of nitroxy-QPQ additively manufactured 17-4 PH steel on marine and nuclear reactor components. Surface Engineering. 2024;40(11-12):1113-1120. doi:10.1177/02670844241287344
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toz Metalurjisi, Üretim Metalurjisi
Bölüm Tasarım ve Teknoloji
Yazarlar

Ufuk Taşcı 0000-0002-8577-443X

Proje Numarası FBG-2022-7860
Erken Görünüm Tarihi 22 Mayıs 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 21 Mart 2025
Kabul Tarihi 2 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Taşcı, U. (2025). Production of D2 and 17-4 PH Bimetallic Materials and Investigation of Their Mechanical Properties in Atomic Diffusion Additive Manufacturing Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(2), 488-498. https://doi.org/10.29109/gujsc.1662944

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526