Araştırma Makalesi
BibTex RIS Kaynak Göster

Yığma Yapılarda Güçlendirme Tekniklerinin Koruma İlkeleri ile İlişkilendirilmesi ve Mardin Tarihi Dokusunda Değerlendirilmesi

Yıl 2024, Cilt: 12 Sayı: 4, 979 - 1005, 31.12.2024
https://doi.org/10.29109/gujsc.1497946

Öz

Tarihi yapılar, deprem, kuvvetli rüzgâr, patlama gibi güçlü dış yüklere karşı savunmasız olduğundan, son yıllarda yığma yapılar ve elemanları için farklı güçlendirme yaklaşımları geliştirilmiştir. Yapıya uygulanacak en uygun güçlendirme yöntemini belirlemek için her bir tekniğin avantaj ve dezavantajlarının kapsamlı biçimde değerlendirilmesi gerekmektedir. Bu çalışma, farklı güçlendirme yöntemlerinin karşılaştırılmasını ve etkinliklerinin değerlendirilmesini amaçlamaktadır. Çalışmada sistematik literatür taraması, verilerin analizi ve koruma tüzüklerinin incelenmesi olmak üzere toplam 3 aşamalı bir metodoloji izlenmiştir. İlk aşamada, literatür taraması ile tarihi yapıların güçlendirilmesi konusunda ilgili önemli mevcut kaynaklara yer verilmiş ve önemli bir veri sunulmuştur. İkinci aşamada elde edilen sonuçlara ait veriler tablolaştırılmıştır. Son aşamada ise uluslararası koruma tüzükleri kapsamında geçen güçlendirme maddeleri ortaya konmuş ve tarihi yığma yapılara uygulanabilecek güçlendirme tekniklerinin değerlendirmelerine yer verilmiştir. Bu değerlendirmeler ile birlikte önemli kültürel miras eserlerine sahip Mardin’deki tarihi yapıların durumu analiz edilmiştir. Çalışmada, tarihi yığma yapılarının güçlendirilmesinde teknolojik gelişmeler ile birlikte uygun müdahalelerin gerçekleştirilmesinin analiz ve deneyler ile mümkün olduğu; Mardin tarihi dokusunda güçlendirme tekniklerine ihtiyaç duyulan birçok yığma yapı stoğunun var olduğu vurgulanmaktadır. Sonuç olarak, inşa edildiği döneme ait değerlerin nesiller arası aktarımında kritik öneme sahip olan mimari miras yapılarının gerektiği durumlarda uygun güçlendirme stratejileri ve projeler ile korunması büyük önem arz etmektedir.

Kaynakça

  • [1] Matthys H., Noland L., Evaluation, strengthening and retrofitting of masonry buildings. TMS, Colorado (1989).
  • [2] Ehsani M., Saadatmanesh H., Velazquez-Dimas J., Behavior of retrofitted URM walls under simulated earthquake loading. Journal of Composites for Construction, 3(3) (1999) 134-142. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(134)
  • [3] Binda L., Modena C., Casarin F., Lorenzoni F., Cantini L., Munda S., Emergency actions and investigations on cultural heritage after the L’Aquila earthquake: the case of the Spanish Fortress. Bulletin of Earthquake Engineering, 9 (2011) 105-138. https://doi.org/10.1007/s10518-010-9217-3
  • [4] D’Ayala DF., Paganoni S., Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bulletin of Earthquake Engineering, 9 (2011) 81-104. https://doi.org/10.1007/s10518-010-9224-4
  • [5] Mazzarella L., Energy retrofit of historic and existing buildings. The legislative and regulatory point of view. Energy and Buildings, 95 (2015) 23-31. https://doi.org/10.1016/j.enbuild.2014.10.073
  • [6] Foraboschi P., Resisting system and failure modes of masonry domes. Engineering Failure Analysis, 44 (2014) 315-337. https://doi.org/10.1016/j.engfailanal.2014.05.005
  • [7] Foraboschi P., Church of San Giuliano di Puglia: seismic repair and upgrading. Engineering Failure Analysis, 33 (2013) 281-314. https://doi.org/10.1016/j.engfailanal.2013.05.023
  • [8] Örmecioğlu HT., Tarihi yapıların yapısal güçlendirilmesinde ana ilkeler ve yaklaşımlar. Politeknik Dergisi, 13(3) (2010) 233-237.
  • [9] Fırat S., Işık N., Selçuk E., Tarihi yapıların temel sistemlerinin güçlendirilmesi. Türk Doğa ve Fen Dergisi, 9(Özel Sayı) (2020) 182-189. https://doi.org/10.46810/tdfd.755813
  • [10] Soyluk A., Tuna ME., Sismik taban izolasyonu uygulaması için tarihi Şehzade Mehmet Camisinin dinamik analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 26(3) (2011) 667-675.
  • [11] Fırat FK., Tanrıverdi Ş., Ural A., Kara ME., Kubbe yapı formlarının kenet ile güçlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2) (2022) 326-334. https://doi.org/10.28948/ngumuh.1077401
  • [12] Bal A., Şimşek S., Tarihi yığma bir yapının lifli polimerler (FRP) ile güçlendirme alternatiflerinin araştırılması ve proje uygulaması. Harran Üniversitesi Mühendislik Dergisi, 4(3) (2019) 112-119.
  • [13] Carhoglu Aİ., Zabin P., Korkmaz KA., Kars kümbet camisinin deprem davranısının incelenmesi. Gazi University Journal of Science Part C: Design and Technology, 2(1) (2014). 189-196.
  • [14] Diz-Mellado E., Mascort-Albea EJ., Romero-Hernández R., Galán-Marín C., Rivera-Gómez C., Ruiz-Jaramillo J., Jaramillo-Morilla A., Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study. Journal of Building Engineering, 37 (2021) 102134. https://doi.org/10.1016/j.jobe.2020.102134
  • [15] Ragozzino E., Nonlinear seismic response in the western L'Aquila basin (Italy): Numerical FEM simulations vs. ground motion records. Engineering Geology, 174 (2014) 46-60. https://doi.org/10.1016/j.enggeo.2014.03.010
  • [16] Aydin AC., Özkaya SG., The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere Bridge). Engineering Failure Analysis, 84 (2018) 131-138. https://doi.org/10.1016/j.engfailanal.2017.11.002
  • [17] The International Scientific Committee on the Analysis and Restoration of Structures of Architectural Heritage (ISCARSAH)., ISCARSAH Principles (2003). https://iscarsah.org/wp-content/uploads/2014/11/iscarsah-principles-tc3bcrk.pdf Erişim 26 Ağustos 2024
  • [18] Wang C., Sarhosis V., Nikitas N., Strengthening/retrofitting techniques on unreinforced masonry structure/element subjected to seismic loads: A literature review. The Open Construction & Building Technology Journal, 12(1) (2018) 251-268. https://doi.org/10.2174/1874836801812010251
  • [19] Chuang SW., Zhuge Y., Seismic retrofitting of unreinforced masonry buildings–a literature review. Australian Journal of Structural Engineering, 6(1) (2005) 25-36. https://doi.org/10.1080/13287982.2005.11464942
  • [20] Bhattacharya S., Nayak S., Dutta SC., A critical review of retrofitting methods for unreinforced masonry structures. Journal of Disaster Risk Reduction, 7 (2014) 51-67. https://doi.org/10.1016/j.ijdrr.2013.12.004
  • [21] Jokilehto J., A history of architectural conservation. Routledge, New York (2017).
  • [22] Saygı AS., Sahil S., Çanakkale-Bozcaada Geleneksel Kent Dokusu ve Evleri. Gazi University Journal of Science Part C: Design and Technology, 5(3) (2017) 13-35.
  • [23] Tuna ME., Depreme dayanıklı yapı tasarımı. Turhan Kitabevi, Ankara (2000).
  • [24] Naeim F., Kelly JM., (1999) Design of seismic isolated structures: from theory to practice. John Wiley & Sons, New York.
  • [25] Julie S., Sajeeb R., Performance of base isolators and tuned mass dampers in vibration control of a multistoried building. IOSR Journal of Mechanical and Civil Engineering, 2 (2012) 01-07.
  • [26] Cimellaro GP., Marasco S., Introduction to dynamics of structures and earthquake engineering (Vol. 45). Springer, Cham (2018).
  • [27] Towashiraporn P., Park J., Goodno BJ., Craig JI., Passive control methods for seismic response modification. Progress in Structural Engineering and Materials, 4(1) (2002) 74-86. https://doi.org/10.1002/pse.107
  • [28] Soyluk A., Sismik taban izolatörü kullanımının mimari tasarıma etkisi. Doktora tezi. Gazi Üniversitesi (2010).
  • [29] De Luca A., Mele E., Molina J., Verzeletti G., Pinto AV., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Engineering & Structural Dynamics, 30(8) (2001) 1125-1145. https://doi.org/10.1002/eqe.54
  • [30] Kelly JM., Aseismic base isolation: review and bibliography. Soil Dynamics and Earthquake Engineering, 5(4) (1986) 202-216. https://doi.org/10.1016/0267-7261(86)90006-0
  • [31] Kilar V., Petrovcic S., (2018) Seismic rehabilitation of masonry heritage structures with base-isolation and with selected contemporary strengthening measures. In: Ivorra S, Brebbia CA (ed) Seismic Resistant Structures, WIT Press, Southampton, ss 13-23.
  • [32] Seki M., Miyazaki M., Tsuneki Y., Kataoka K., A masonry school building retrofitted by base isolation technology. 12th World Conference on Earthquake Engineering, Auckland, Yeni Zelenda, (2000).
  • [33] Nanda RP., Agarwal P., Shrikhande M., Suitable friction sliding materials for base isolation of masonry buildings. Shock and Vibration, 19(6) (2012) 1327-1339. https://doi.org/10.3233/SAV-2012-0675
  • [34] Tomaževič M., Klemenc I., Weiss P., Seismic upgrading of old masonry buildings by seismic isolation and CFRP laminates: a shaking-table study of reduced scale models. Bulletin of Earthquake Engineering, 7(1) (2009) 293-321. https://doi.org/10.1007/s10518-008-9086-1
  • [35] Chiozzi A., Simoni M., Tralli A., Base isolation of heavy non-structural monolithic objects at the top of a masonry monumental construction. Materials and Structures, 49(6) (2016) 2113-2130. https://doi.org/10.1617/s11527-015-0637-z
  • [36] Symans MD., Constantinou MC., Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering Structures, 21(6) (1999) 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3
  • [37] Soong TT., Dargush GF., Passive energy dissipation systems in structural engineering. Wiley, New York (1997).
  • [38] Housner G., Bergman LA., Caughey TK., Chassiakos AG., Claus RO., Masri SF., vd., Structural control: past, present, and future. Journal of Engineering Mechanics, 123(9) (1997) 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  • [39] Asteris PG., On the structural analysis and seismic protection of historical masonry structures. The Open Construction & Building Technology Journal, 2(1) (2008) 124-133. https://doi.org/10.2174/1874836800802010124
  • [40] Taleb R., Bouriche F., Remas A., Boukri M., Kehila F., Use of ambient and forced vibration tests to evaluate seismic properties of an unreinforced masonry building rehabilitated by dampers. 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portekiz, (2012).
  • [41] Longarini N., Zucca M., A chimney’s seismic assessment by a tuned mass damper. Engineering Structures, 79 (2014) 290-296. https://doi.org/10.1016/j.engstruct.2014.05.020
  • [42] Benedetti D., Increasing available ductility in masonry buildings via energy absorbers. Shaking table tests. European Earthquake Engineering, 3 (2004) 1-29.
  • [43] Gocevski V., Petraskovic Z., Seismic analysis of existing masonry structures reinforced with “SYSTEM DC90” dampers. International Conference on Earthquake Engineering, Üsküp, Makedonya, (2013).
  • [44] Abrams DP., New perspectives on seismic rehabilitation. Asia-Pacific worshop on Seismic Design and Retrofit of Structures, Taipei, Taiwan, (1999).
  • [45] Pilorge AG., Impact of friction dampers and ductility factor on the seismic response of concrete moment resisting frame buildings. Yüksek Lisans Tezi, Concordia University (2018).
  • [46] Binda L., Modena C., Baronio G., Abbaneo S., Repair and investigation techniques for stone masonry walls. Construction and Building Materials, 11(3) (1997) 133-142. https://doi.org/10.1016/S0950-0618(97)00031-7
  • [47] Valluzzi MR., Tinazzi D., Modena C., Shear behavior of masonry panels strengthened by FRP laminates. Construction and Building Materials, 16(7) (2002) 409-416. https://doi.org/10.1016/S0950-0618(02)00043-0
  • [48] Salaman A., Stepinac M., Matorić I., Klasić M., Post-earthquake condition assessment and seismic upgrading strategies for a heritage-protected school in Petrinja, Croatia. Buildings. 12(12) (2022) 2263. https://doi.org/10.3390/buildings12122263
  • [49] Naaman AE., Ferrocement and laminated cementitious composites. Techno Press, Ann Arbor 3000(1) (2000).
  • [50] ElGawady M., Lestuzzi P., Badoux M., Retrofitting of masonry walls using shotcrete. The 2006 New Zealand Society for Earthquake Engineering Conference, Yeni Zelanda, (2006).
  • [51] Karantoni FV., Fardis MN., Effectiveness of seismic strengthening techniques for masonry buildings. Journal of Structural Engineering, 118(7) (1992) 1884-1902. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1884)
  • [52] Augenti N., Nanni A., Parisi F., Construction failures and innovative retrofitting. Buildings. 3(1) (2013) 100-121. https://doi.org/10.3390/buildings3010100
  • [53] ElGawady M., Lestuzzi P., Badoux M., A review of conventional seismic retrofitting techniques for URM. 13th International Brick and Block Masonry Conference, Amsterdam, Hollanda, (2004)
  • [54] Abrams D., Lynch J., Flexural behavior of retrofitted masonry piers. The KEERC-MAE Joint Seminar on Risk Mitigation for Regions of Moderate Seismicity, Illinois, Amerika, (2001).
  • [55] Kadam SB., Singh Y., Li B., Out-of-plane behaviour of unreinforced masonry strengthened using ferrocement overlay. Materials and Structures, 48(10) (2015) 3187-3203. https://doi.org/10.1617/s11527-014-0390-8
  • [56] Fauzan., Ismail FA., Hakam A., Zaidir., Amalia SH., Experimental study on masonry building strengthened with ferrocement layers. GEOMATE Journal, 14(45) (2018) 84-90. https://doi.org/10.21660/2018.45.7305
  • [57] Garofano A., Ceroni F., Pecce M., Modelling of the in-plane behaviour of masonry walls strengthened with polymeric grids embedded in cementitious mortar layers. Composites Part B: Engineering, 85 (2016) 243-258. https://doi.org/10.1016/j.compositesb.2015.09.005
  • [58] Tomazevic M., Earthquake-resistant design of masonry buildings. World Scientific, Singapur 1 (1999).
  • [59] Borri A., Corradi M., Sisti R., Buratti C., Belloni E., Moretti E., Masonry wall panels retrofitted with thermal-insulating GFRP-reinforced jacketing. Materials and Structures, 49 (2016) 3957-3968. https://doi.org/10.1617/s11527-015-0766-4
  • [60] Binda L., Saisi A., State of the art of research on historic structures in Italy. (2001) https://www.researchgate.net/publication/237440027_State_of_the_Art_of_Research_on_Historic_Structures_in_Italy Erişim 31 Mayıs 2024.
  • [61] Sunrise Updates. https://www.sunrisetools.co.uk/blog/post/8-how-to-pointing-repointing-brickwork Erişim 24 Mayıs 2024
  • [62] Tetley R., Madabhushi G., Vulnerability of adobe buildings under earthquake loading. International Coference on Earthquake Geotechnical Engineering, Thessaloniki, Yunanistan, (2007).
  • [63] Tinazzi D., Arduini M., Modena C., Nanni A., FRP structural re-pointing of masonry assemblages. 3rd International Conference on Advanced Composite Materials in Bridges and Structures, Ottawa, Kanada, (2000).
  • [64] Alcaino P., Santa-Maria H., Experimental response of externally retrofitted masonry walls subjected to shear loading. Journal of Composites for Construction, 12(5) (2008) 489-498. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(489)
  • [65] Moropoulou A., Bakolas A., Anagnostopoulou S., Composite materials in ancient structures. Cement and Concrete Composites, 27(2) (2005) 295-300. https://doi.org/10.1016/j.cemconcomp.2004.02.018
  • [66] Apostolopoulou M., Aggelakopoulou E., Siouta L., Bakolas A., Douvika M., Asteris PG., Moropoulou A., A methodological approach for the selection of compatible and performable restoration mortars in seismic hazard areas. Construction and Building Materials, 155 (2017) 1-14. https://doi.org/10.1016/j.conbuildmat.2017.07.210
  • [67] Pusat SE., Tarihi yapıların onarımında kullanılacak harç üretimi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi (2002).
  • [68] Akbulut DE., Tarihi yapıların onarımında kullanılacak harçların seçimine yönelik bir öneri. Doktora Tezi, Yıldız Teknik Üniversitesi (2006).
  • [69] Hamid AA., Mahmoud A., El Magd SA., Strengthening and repair of unreinforced masonry structures: state-of-the-art. 10th International Brick and Block Masonry Conference, Calgary, Kanada, (1994).
  • [70] Rai DC., Goel SC., Seismic strengthening of unreinforced masonry piers with steel elements. Earthquake Spectra, 12(4) (1996) 845-862. https://doi.org/10.1193/1.1585913
  • [71] Taghdi M., Seismic retrofit of low-rise masonry and concrete walls by steel strips. Doktora Tezi, University of Ottawa (1998).
  • [72] Prota A., Marcari G., Fabbrocino G., Manfredi G., Aldea C., Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix–grid composites. Journal of Composites for Construction, 10(3) (2006) 223-233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223)
  • [73] Triantafillou TC., Fardis MN., Strengthening of historic masonry structures with composite materials. Materials and Structures, 30 (1997) 486-496. https://doi.org/10.1007/BF02524777
  • [74] Amiraslanzadeh R., Ikemoto T., Miyajima M., Fallahi A., A comparative study on seismic retrofitting methods for unreinforced masonry brick walls. 15th World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Lizbon, Portekiz, (2012).
  • [75] Al-Manaseer A., Neis W., Load tests on post-tensioned masonry wall panels. Structural Journal, 84(6) (1987) 467-472. https://doi.org/10.14359/2768
  • [76] Korkmaz SZ., Korkmaz HH., Türer A., Elastik art-germe şeritleriyle, yığma yapıların güçlendirilmesi. Yığma Yapıların Deprem Güvenliğinin Arttırılması Çalıştayı Bildirileri, Ankara, Türkiye, (2005).
  • [77] Teng JG., Chen J., Smith ST., Lam L., Behaviour and strength of FRP strengthened RC structures: a state-of-the-art review. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 156(1) (2003) 51-62. https://doi.org/10.1680/stbu.2003.156.1.51
  • [78] ElGawady M., Lestuzzi P., Badoux M., A review of retrofitting of unreinforced masonry walls using composites. 4th Int. Conf. On Advanced Composite Materials in Bridges and Structures, Alberta, Kanada, (2004).
  • [79] Mahmood H., Ingham JM., Diagonal compression testing of FRP-retrofitted unreinforced clay brick masonry wallettes. Journal of Composites for Construction, 15(5) (2011) 810-820.
  • [80] Fırat FK., Eren A., Tarihi yığma yapılardaki hasarlı kemerler üzerinde FRP etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(4) (2015) 659-670. https://doi.org/10.17341/gummfd.46980
  • [81] Petrovčič S., Kilar V., Design considerations for retrofitting of historic masonry structures with externally bonded FRP systems. International Journal of Architectural Heritage, 16(7) (2022) 957-976. https://doi.org/10.1080/15583058.2020.1853278
  • [82] Saleem MU., Numada M., Amin MN., Meguro K., Seismic response of PP-band and FRP retrofitted house models under shake table testing. Construction and Building Materials, 111 (2016) 298-316. https://doi.org/10.1016/j.conbuildmat.2016.02.073
  • [83] Burgoyne C., Does FRP have an economic future?. 4th Conference on Advanced Composite Materials in Bridges and Structures, Calgary, Kanada, (2004).
  • [84] Sathiparan N., Mayorca P., Nesheli KN., Guragain R., Meguro K., Experimental study on in-plane and out-of-plane behavior of masonry wallettes retrofitted by PP-band meshes. Seisan Kenkyu, 57(6) (2005) 530-533. https://doi.org/10.11188/seisankenkyu.57.530
  • [85] Macabuag J., Guragain R., Bhattacharya S., Seismic retrofitting of non-engineered masonry in rural Nepal. . Proceedings of the Institution of Civil Engineers - Structures and Buildings, 165(6) (2012) 273-286. https://doi.org/10.1680/stbu.10.00015
  • [86] Meguro K., Soti R., Navaratnaraj S., Numada M., Dynamic testing of masonary houses retrofitted by bamboo band meshes. JSCE Journal of Earthquake Engineering, 68(4) (2012) I_760-I_765. https://doi.org/10.2208/jscejseee.68.I_760
  • [87] Carozzi FG., Poggi C., Bertolesi E., Milani G., Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation. Composite Structures, 187 (2018) 466-480. https://doi.org/10.1016/j.compstruct.2017.12.075
  • [88] Anania L., Badalà A., D’Agata G., The post strengthening of the masonry vaults by the Ω-Wrap technique based on the use of C-FRP. Construction and Building Materials, 47 (2013) 1053-1068. https://doi.org/10.1016/j.conbuildmat.2013.05.012
  • [89] Valvona F., Toti J., Gattulli V., Potenza F., Effective seismic strengthening and monitoring of a masonry vault by using Glass Fiber Reinforced Cementitious Matrix with embedded Fiber Bragg Grating sensors. Composites Part B: Engineering, 113 (2017) 355-370. https://doi.org/10.1016/j.compositesb.2017.01.024
  • [90] Zampieri P., Simoncello N., Tetougueni CD., Pellegrino C., A review of methods for strengthening of masonry arches with composite materials. Engineering Structures, 171 (2018) 154-169. https://doi.org/10.1016/j.engstruct.2018.05.070
  • [91] Garmendia L., Larrinaga P., San-Mateos R., San-José JT., Strengthening masonry vaults with organic and inorganic composites: an experimental approach. Materials & Design, 85 (2015) 102-114. https://doi.org/10.1016/j.matdes.2015.06.150
  • [92] Padalu PKVR., Vashisht R., Ramancharla PK., (2023). A Review on Construction Techniques and Structural Restoration of Ancient Masonry Buildings. In Goel MD, Kumar R, Gadve SS (ed) Structural Engineering Convention, Springer Nature Singapore, ss 335-350.
  • [93] Roca P., Cervera M., Gariup G., Pela’ L., Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 17 (2010) 299-325. https://doi.org/10.1007/s11831-010-9046-1
  • [94] Tomaževič M., Klemenc I., Seismic behaviour of confined masonry walls. Earthquake Engineering & Structural Dynamics, 26(10) (1997) 1059-1071. https://doi.org/10.1002/(SICI)1096-9845(199710)26:10<1059::AID-EQE694>3.0.CO;2-M
  • [95] Brignola A., Frumento S., Lagomarsino S., Podestà S., Identification of shear parameters of masonry panels through the in-situ diagonal compression test. International Journal of Architectural Heritage, 3(1) (2008) 52-73. https://doi.org/10.1080/15583050802138634
  • [96] Yardim Y., Lalaj O., Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing. Construction and Building Materials, 102 (2016) 149-154. https://doi.org/10.1016/j.conbuildmat.2015.10.095
  • [97] Darbhanzi A., Marefat M., Khanmohammadi M., Investigation of in-plane seismic retrofit of unreinforced masonry walls by means of vertical steel ties. Construction and Building Materials, 52 (2014) 122-129. https://doi.org/10.1016/j.conbuildmat.2013.11.020
  • [98] Spina G., Ramundo F., Mandara A., Masonry strengthening by metal tie-bars, a case study. Paper presented at the Structural Analysis of Historical Constructions. 4th International Seminar on Structural Analysis of Historical Constructions, Padova, İtalya, (2004).
  • [99] Ural A., Fırat FK., Tuğrulelçi Ş., Kara ME., Experimental and numerical study on effectiveness of various tie-rod systems in brick arches. Engineering Structures, 110 (2016) 209-221. https://doi.org/10.1016/j.engstruct.2015.11.038
  • [100] Tanriverdi S., Yavuz C., Investigation of the effects of clamp depths on the flexural behavior of walls in masonry walls. Construction and Building Materials, 393 (2023) 132081. https://doi.org/10.1016/j.conbuildmat.2023.132081
  • [101] Çelik T., Tanrıverdi Ş., Ural A., Fırat FK., Yığma yapılarda kullanılan kenetlerin yapı davranışına etkilerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3) (2021) 650-659. https://doi.org/10.35414/akufemubid.874494
  • [102] Ural A., Kara ME., Uslu S., Kenet ve zıvanaların yığma duvarların kesme (kayma) davranışına etkisi, 5. Tarihi Eserlerin Güçlendirilmesi ve Geleceğe Güvenle Devredilmesi Sempozyumu, Erzurum, 537-548, (2015)
  • [103] Da Porto F., Guidi G., Dalla Benetta M., Verlato N., Combined in-plane/out-ofplane experimental behaviour of reinforced and strengthened infill masonry walls. 12th Canadian Masonry Symposium, British Columbia, Kanada, (2013).
  • [104] Martins A., Vasconcelos G., Fangueiro R., Cunha F., Experimental assessment of an innovative strengthening material for brick masonry infills. Composites Part B: Engineering, 80 (2015) 328-342. https://doi.org/10.1016/j.compositesb.2015.06.012
  • [105] Çakmak AŞ., Moropoulou A., Mullen CL., Interdisciplinary study of dynamic behavior and earthquake response of Hagia Sophia. Soil dynamics and earthquake engineering, 14(2) (1995) 125-133. https://doi.org/10.1016/0267-7261(94)00031-B
  • [106] Aydıngün GŞ., Tarih boyunca yaşanan depremler sonrası Ayasofya onarımları. Deprem Sempozyumu, Kocaeli, (2005).
  • [107] Kocaman İ., Mercimek Ö., Gürbüz M., Erbaş Y., Anıl Ö., The effect of Kahramanmaraş earthquakes on historical Malatya Yeni Mosque. Engineering Failure Analysis, 161 (2024) 108310. https://doi.org/10.1016/j.engfailanal.2024.108310
  • [108] ICOMOS. Carte Del Resturo, (1931). https://www.icomos.org.tr/Dosyalar/ICOMOSTR_tr0660878001536681682.pdf, Erişim 3 Mayıs 2024
  • [109] UNESCO. Lahey Konvansiyonu, (1954). https://unesco.org.tr/Home/Page/60?slug=Yerlerinden-Edilmiş-Kültür-Varlıkları-İhtisas-Komitesi, Erişim 3 Mayıs 2024
  • [110] ICOMOS. Venedik Tüzüğü, (1964). https://www.icomos.org.tr/Dosyalar/ICOMOSTR_tr0243603001536681730.pdf, Erişim 3 Mayıs 2024
  • [111] Kutlu İ., Şimşek D., Mardin Mimarlık Mirasında Mimarbaşı Lole'nin Rolü. İDEALKENT, 16(44) (2024) 710-746. https://doi.org/10.31198/idealkent.1456731
  • [112] Bekar İ., Kutlu I., Ergün R., Importance performance analysis for sustainability of reused historical building: Mardin Sabanci City Museum and art gallery. Open House International, 49(3) (2024) 550-573. https://doi.org/10.1108/OHI-04-2023-0080
  • [113] Semerci F., Mardin kireçtaşının yapı malzemesi olarak kullanımına yönelik analizlerinin yapılması: Kasımiye Medresesi örneği. Journal of Architectural Sciences and Applications, 2(2) (2017) 60-79.

Evaluation of technical approaches in the retrofitting of historical buildings in association with conservation principles and Mardin's historical heritage

Yıl 2024, Cilt: 12 Sayı: 4, 979 - 1005, 31.12.2024
https://doi.org/10.29109/gujsc.1497946

Öz

Since historical buildings are vulnerable to strong external loads such as earthquakes, strong winds and explosions, different seismic retrofitting approaches have been developed and applied for masonry structures in recent years. This study aims to compare different retrofitting methods and to evaluate their effects and effectiveness. The study was based on a 3-stage methodology: systematic literature review, data analysis and examination of conservation regulations. Firstly, a literature review was conducted to analyse the existing literature on the retrofitting of historical buildings. In the second stage, the data of the results obtained were analysed in tables. In the last stage, the retrofitting articles within the scope of international conservation regulations are presented and the retrofitting techniques that can be applied to historical masonry structures. The condition of historical buildings possessing significant cultural heritage in Mardin was systematically analyzed. The study empirically demonstrated the feasibility of reinforcing historical masonry structures through appropriate interventions combined with technological advancements. Furthermore, it was emphasized that Mardin's historical heritage contains a substantial inventory of masonry buildings requiring retrofitting techniques. In conclusion, the development of reinforcement projects was deemed necessary for architectural heritage structures under threat of demolition.

Kaynakça

  • [1] Matthys H., Noland L., Evaluation, strengthening and retrofitting of masonry buildings. TMS, Colorado (1989).
  • [2] Ehsani M., Saadatmanesh H., Velazquez-Dimas J., Behavior of retrofitted URM walls under simulated earthquake loading. Journal of Composites for Construction, 3(3) (1999) 134-142. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(134)
  • [3] Binda L., Modena C., Casarin F., Lorenzoni F., Cantini L., Munda S., Emergency actions and investigations on cultural heritage after the L’Aquila earthquake: the case of the Spanish Fortress. Bulletin of Earthquake Engineering, 9 (2011) 105-138. https://doi.org/10.1007/s10518-010-9217-3
  • [4] D’Ayala DF., Paganoni S., Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bulletin of Earthquake Engineering, 9 (2011) 81-104. https://doi.org/10.1007/s10518-010-9224-4
  • [5] Mazzarella L., Energy retrofit of historic and existing buildings. The legislative and regulatory point of view. Energy and Buildings, 95 (2015) 23-31. https://doi.org/10.1016/j.enbuild.2014.10.073
  • [6] Foraboschi P., Resisting system and failure modes of masonry domes. Engineering Failure Analysis, 44 (2014) 315-337. https://doi.org/10.1016/j.engfailanal.2014.05.005
  • [7] Foraboschi P., Church of San Giuliano di Puglia: seismic repair and upgrading. Engineering Failure Analysis, 33 (2013) 281-314. https://doi.org/10.1016/j.engfailanal.2013.05.023
  • [8] Örmecioğlu HT., Tarihi yapıların yapısal güçlendirilmesinde ana ilkeler ve yaklaşımlar. Politeknik Dergisi, 13(3) (2010) 233-237.
  • [9] Fırat S., Işık N., Selçuk E., Tarihi yapıların temel sistemlerinin güçlendirilmesi. Türk Doğa ve Fen Dergisi, 9(Özel Sayı) (2020) 182-189. https://doi.org/10.46810/tdfd.755813
  • [10] Soyluk A., Tuna ME., Sismik taban izolasyonu uygulaması için tarihi Şehzade Mehmet Camisinin dinamik analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 26(3) (2011) 667-675.
  • [11] Fırat FK., Tanrıverdi Ş., Ural A., Kara ME., Kubbe yapı formlarının kenet ile güçlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2) (2022) 326-334. https://doi.org/10.28948/ngumuh.1077401
  • [12] Bal A., Şimşek S., Tarihi yığma bir yapının lifli polimerler (FRP) ile güçlendirme alternatiflerinin araştırılması ve proje uygulaması. Harran Üniversitesi Mühendislik Dergisi, 4(3) (2019) 112-119.
  • [13] Carhoglu Aİ., Zabin P., Korkmaz KA., Kars kümbet camisinin deprem davranısının incelenmesi. Gazi University Journal of Science Part C: Design and Technology, 2(1) (2014). 189-196.
  • [14] Diz-Mellado E., Mascort-Albea EJ., Romero-Hernández R., Galán-Marín C., Rivera-Gómez C., Ruiz-Jaramillo J., Jaramillo-Morilla A., Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study. Journal of Building Engineering, 37 (2021) 102134. https://doi.org/10.1016/j.jobe.2020.102134
  • [15] Ragozzino E., Nonlinear seismic response in the western L'Aquila basin (Italy): Numerical FEM simulations vs. ground motion records. Engineering Geology, 174 (2014) 46-60. https://doi.org/10.1016/j.enggeo.2014.03.010
  • [16] Aydin AC., Özkaya SG., The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere Bridge). Engineering Failure Analysis, 84 (2018) 131-138. https://doi.org/10.1016/j.engfailanal.2017.11.002
  • [17] The International Scientific Committee on the Analysis and Restoration of Structures of Architectural Heritage (ISCARSAH)., ISCARSAH Principles (2003). https://iscarsah.org/wp-content/uploads/2014/11/iscarsah-principles-tc3bcrk.pdf Erişim 26 Ağustos 2024
  • [18] Wang C., Sarhosis V., Nikitas N., Strengthening/retrofitting techniques on unreinforced masonry structure/element subjected to seismic loads: A literature review. The Open Construction & Building Technology Journal, 12(1) (2018) 251-268. https://doi.org/10.2174/1874836801812010251
  • [19] Chuang SW., Zhuge Y., Seismic retrofitting of unreinforced masonry buildings–a literature review. Australian Journal of Structural Engineering, 6(1) (2005) 25-36. https://doi.org/10.1080/13287982.2005.11464942
  • [20] Bhattacharya S., Nayak S., Dutta SC., A critical review of retrofitting methods for unreinforced masonry structures. Journal of Disaster Risk Reduction, 7 (2014) 51-67. https://doi.org/10.1016/j.ijdrr.2013.12.004
  • [21] Jokilehto J., A history of architectural conservation. Routledge, New York (2017).
  • [22] Saygı AS., Sahil S., Çanakkale-Bozcaada Geleneksel Kent Dokusu ve Evleri. Gazi University Journal of Science Part C: Design and Technology, 5(3) (2017) 13-35.
  • [23] Tuna ME., Depreme dayanıklı yapı tasarımı. Turhan Kitabevi, Ankara (2000).
  • [24] Naeim F., Kelly JM., (1999) Design of seismic isolated structures: from theory to practice. John Wiley & Sons, New York.
  • [25] Julie S., Sajeeb R., Performance of base isolators and tuned mass dampers in vibration control of a multistoried building. IOSR Journal of Mechanical and Civil Engineering, 2 (2012) 01-07.
  • [26] Cimellaro GP., Marasco S., Introduction to dynamics of structures and earthquake engineering (Vol. 45). Springer, Cham (2018).
  • [27] Towashiraporn P., Park J., Goodno BJ., Craig JI., Passive control methods for seismic response modification. Progress in Structural Engineering and Materials, 4(1) (2002) 74-86. https://doi.org/10.1002/pse.107
  • [28] Soyluk A., Sismik taban izolatörü kullanımının mimari tasarıma etkisi. Doktora tezi. Gazi Üniversitesi (2010).
  • [29] De Luca A., Mele E., Molina J., Verzeletti G., Pinto AV., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Engineering & Structural Dynamics, 30(8) (2001) 1125-1145. https://doi.org/10.1002/eqe.54
  • [30] Kelly JM., Aseismic base isolation: review and bibliography. Soil Dynamics and Earthquake Engineering, 5(4) (1986) 202-216. https://doi.org/10.1016/0267-7261(86)90006-0
  • [31] Kilar V., Petrovcic S., (2018) Seismic rehabilitation of masonry heritage structures with base-isolation and with selected contemporary strengthening measures. In: Ivorra S, Brebbia CA (ed) Seismic Resistant Structures, WIT Press, Southampton, ss 13-23.
  • [32] Seki M., Miyazaki M., Tsuneki Y., Kataoka K., A masonry school building retrofitted by base isolation technology. 12th World Conference on Earthquake Engineering, Auckland, Yeni Zelenda, (2000).
  • [33] Nanda RP., Agarwal P., Shrikhande M., Suitable friction sliding materials for base isolation of masonry buildings. Shock and Vibration, 19(6) (2012) 1327-1339. https://doi.org/10.3233/SAV-2012-0675
  • [34] Tomaževič M., Klemenc I., Weiss P., Seismic upgrading of old masonry buildings by seismic isolation and CFRP laminates: a shaking-table study of reduced scale models. Bulletin of Earthquake Engineering, 7(1) (2009) 293-321. https://doi.org/10.1007/s10518-008-9086-1
  • [35] Chiozzi A., Simoni M., Tralli A., Base isolation of heavy non-structural monolithic objects at the top of a masonry monumental construction. Materials and Structures, 49(6) (2016) 2113-2130. https://doi.org/10.1617/s11527-015-0637-z
  • [36] Symans MD., Constantinou MC., Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering Structures, 21(6) (1999) 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3
  • [37] Soong TT., Dargush GF., Passive energy dissipation systems in structural engineering. Wiley, New York (1997).
  • [38] Housner G., Bergman LA., Caughey TK., Chassiakos AG., Claus RO., Masri SF., vd., Structural control: past, present, and future. Journal of Engineering Mechanics, 123(9) (1997) 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  • [39] Asteris PG., On the structural analysis and seismic protection of historical masonry structures. The Open Construction & Building Technology Journal, 2(1) (2008) 124-133. https://doi.org/10.2174/1874836800802010124
  • [40] Taleb R., Bouriche F., Remas A., Boukri M., Kehila F., Use of ambient and forced vibration tests to evaluate seismic properties of an unreinforced masonry building rehabilitated by dampers. 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portekiz, (2012).
  • [41] Longarini N., Zucca M., A chimney’s seismic assessment by a tuned mass damper. Engineering Structures, 79 (2014) 290-296. https://doi.org/10.1016/j.engstruct.2014.05.020
  • [42] Benedetti D., Increasing available ductility in masonry buildings via energy absorbers. Shaking table tests. European Earthquake Engineering, 3 (2004) 1-29.
  • [43] Gocevski V., Petraskovic Z., Seismic analysis of existing masonry structures reinforced with “SYSTEM DC90” dampers. International Conference on Earthquake Engineering, Üsküp, Makedonya, (2013).
  • [44] Abrams DP., New perspectives on seismic rehabilitation. Asia-Pacific worshop on Seismic Design and Retrofit of Structures, Taipei, Taiwan, (1999).
  • [45] Pilorge AG., Impact of friction dampers and ductility factor on the seismic response of concrete moment resisting frame buildings. Yüksek Lisans Tezi, Concordia University (2018).
  • [46] Binda L., Modena C., Baronio G., Abbaneo S., Repair and investigation techniques for stone masonry walls. Construction and Building Materials, 11(3) (1997) 133-142. https://doi.org/10.1016/S0950-0618(97)00031-7
  • [47] Valluzzi MR., Tinazzi D., Modena C., Shear behavior of masonry panels strengthened by FRP laminates. Construction and Building Materials, 16(7) (2002) 409-416. https://doi.org/10.1016/S0950-0618(02)00043-0
  • [48] Salaman A., Stepinac M., Matorić I., Klasić M., Post-earthquake condition assessment and seismic upgrading strategies for a heritage-protected school in Petrinja, Croatia. Buildings. 12(12) (2022) 2263. https://doi.org/10.3390/buildings12122263
  • [49] Naaman AE., Ferrocement and laminated cementitious composites. Techno Press, Ann Arbor 3000(1) (2000).
  • [50] ElGawady M., Lestuzzi P., Badoux M., Retrofitting of masonry walls using shotcrete. The 2006 New Zealand Society for Earthquake Engineering Conference, Yeni Zelanda, (2006).
  • [51] Karantoni FV., Fardis MN., Effectiveness of seismic strengthening techniques for masonry buildings. Journal of Structural Engineering, 118(7) (1992) 1884-1902. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1884)
  • [52] Augenti N., Nanni A., Parisi F., Construction failures and innovative retrofitting. Buildings. 3(1) (2013) 100-121. https://doi.org/10.3390/buildings3010100
  • [53] ElGawady M., Lestuzzi P., Badoux M., A review of conventional seismic retrofitting techniques for URM. 13th International Brick and Block Masonry Conference, Amsterdam, Hollanda, (2004)
  • [54] Abrams D., Lynch J., Flexural behavior of retrofitted masonry piers. The KEERC-MAE Joint Seminar on Risk Mitigation for Regions of Moderate Seismicity, Illinois, Amerika, (2001).
  • [55] Kadam SB., Singh Y., Li B., Out-of-plane behaviour of unreinforced masonry strengthened using ferrocement overlay. Materials and Structures, 48(10) (2015) 3187-3203. https://doi.org/10.1617/s11527-014-0390-8
  • [56] Fauzan., Ismail FA., Hakam A., Zaidir., Amalia SH., Experimental study on masonry building strengthened with ferrocement layers. GEOMATE Journal, 14(45) (2018) 84-90. https://doi.org/10.21660/2018.45.7305
  • [57] Garofano A., Ceroni F., Pecce M., Modelling of the in-plane behaviour of masonry walls strengthened with polymeric grids embedded in cementitious mortar layers. Composites Part B: Engineering, 85 (2016) 243-258. https://doi.org/10.1016/j.compositesb.2015.09.005
  • [58] Tomazevic M., Earthquake-resistant design of masonry buildings. World Scientific, Singapur 1 (1999).
  • [59] Borri A., Corradi M., Sisti R., Buratti C., Belloni E., Moretti E., Masonry wall panels retrofitted with thermal-insulating GFRP-reinforced jacketing. Materials and Structures, 49 (2016) 3957-3968. https://doi.org/10.1617/s11527-015-0766-4
  • [60] Binda L., Saisi A., State of the art of research on historic structures in Italy. (2001) https://www.researchgate.net/publication/237440027_State_of_the_Art_of_Research_on_Historic_Structures_in_Italy Erişim 31 Mayıs 2024.
  • [61] Sunrise Updates. https://www.sunrisetools.co.uk/blog/post/8-how-to-pointing-repointing-brickwork Erişim 24 Mayıs 2024
  • [62] Tetley R., Madabhushi G., Vulnerability of adobe buildings under earthquake loading. International Coference on Earthquake Geotechnical Engineering, Thessaloniki, Yunanistan, (2007).
  • [63] Tinazzi D., Arduini M., Modena C., Nanni A., FRP structural re-pointing of masonry assemblages. 3rd International Conference on Advanced Composite Materials in Bridges and Structures, Ottawa, Kanada, (2000).
  • [64] Alcaino P., Santa-Maria H., Experimental response of externally retrofitted masonry walls subjected to shear loading. Journal of Composites for Construction, 12(5) (2008) 489-498. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(489)
  • [65] Moropoulou A., Bakolas A., Anagnostopoulou S., Composite materials in ancient structures. Cement and Concrete Composites, 27(2) (2005) 295-300. https://doi.org/10.1016/j.cemconcomp.2004.02.018
  • [66] Apostolopoulou M., Aggelakopoulou E., Siouta L., Bakolas A., Douvika M., Asteris PG., Moropoulou A., A methodological approach for the selection of compatible and performable restoration mortars in seismic hazard areas. Construction and Building Materials, 155 (2017) 1-14. https://doi.org/10.1016/j.conbuildmat.2017.07.210
  • [67] Pusat SE., Tarihi yapıların onarımında kullanılacak harç üretimi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi (2002).
  • [68] Akbulut DE., Tarihi yapıların onarımında kullanılacak harçların seçimine yönelik bir öneri. Doktora Tezi, Yıldız Teknik Üniversitesi (2006).
  • [69] Hamid AA., Mahmoud A., El Magd SA., Strengthening and repair of unreinforced masonry structures: state-of-the-art. 10th International Brick and Block Masonry Conference, Calgary, Kanada, (1994).
  • [70] Rai DC., Goel SC., Seismic strengthening of unreinforced masonry piers with steel elements. Earthquake Spectra, 12(4) (1996) 845-862. https://doi.org/10.1193/1.1585913
  • [71] Taghdi M., Seismic retrofit of low-rise masonry and concrete walls by steel strips. Doktora Tezi, University of Ottawa (1998).
  • [72] Prota A., Marcari G., Fabbrocino G., Manfredi G., Aldea C., Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix–grid composites. Journal of Composites for Construction, 10(3) (2006) 223-233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223)
  • [73] Triantafillou TC., Fardis MN., Strengthening of historic masonry structures with composite materials. Materials and Structures, 30 (1997) 486-496. https://doi.org/10.1007/BF02524777
  • [74] Amiraslanzadeh R., Ikemoto T., Miyajima M., Fallahi A., A comparative study on seismic retrofitting methods for unreinforced masonry brick walls. 15th World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Lizbon, Portekiz, (2012).
  • [75] Al-Manaseer A., Neis W., Load tests on post-tensioned masonry wall panels. Structural Journal, 84(6) (1987) 467-472. https://doi.org/10.14359/2768
  • [76] Korkmaz SZ., Korkmaz HH., Türer A., Elastik art-germe şeritleriyle, yığma yapıların güçlendirilmesi. Yığma Yapıların Deprem Güvenliğinin Arttırılması Çalıştayı Bildirileri, Ankara, Türkiye, (2005).
  • [77] Teng JG., Chen J., Smith ST., Lam L., Behaviour and strength of FRP strengthened RC structures: a state-of-the-art review. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 156(1) (2003) 51-62. https://doi.org/10.1680/stbu.2003.156.1.51
  • [78] ElGawady M., Lestuzzi P., Badoux M., A review of retrofitting of unreinforced masonry walls using composites. 4th Int. Conf. On Advanced Composite Materials in Bridges and Structures, Alberta, Kanada, (2004).
  • [79] Mahmood H., Ingham JM., Diagonal compression testing of FRP-retrofitted unreinforced clay brick masonry wallettes. Journal of Composites for Construction, 15(5) (2011) 810-820.
  • [80] Fırat FK., Eren A., Tarihi yığma yapılardaki hasarlı kemerler üzerinde FRP etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(4) (2015) 659-670. https://doi.org/10.17341/gummfd.46980
  • [81] Petrovčič S., Kilar V., Design considerations for retrofitting of historic masonry structures with externally bonded FRP systems. International Journal of Architectural Heritage, 16(7) (2022) 957-976. https://doi.org/10.1080/15583058.2020.1853278
  • [82] Saleem MU., Numada M., Amin MN., Meguro K., Seismic response of PP-band and FRP retrofitted house models under shake table testing. Construction and Building Materials, 111 (2016) 298-316. https://doi.org/10.1016/j.conbuildmat.2016.02.073
  • [83] Burgoyne C., Does FRP have an economic future?. 4th Conference on Advanced Composite Materials in Bridges and Structures, Calgary, Kanada, (2004).
  • [84] Sathiparan N., Mayorca P., Nesheli KN., Guragain R., Meguro K., Experimental study on in-plane and out-of-plane behavior of masonry wallettes retrofitted by PP-band meshes. Seisan Kenkyu, 57(6) (2005) 530-533. https://doi.org/10.11188/seisankenkyu.57.530
  • [85] Macabuag J., Guragain R., Bhattacharya S., Seismic retrofitting of non-engineered masonry in rural Nepal. . Proceedings of the Institution of Civil Engineers - Structures and Buildings, 165(6) (2012) 273-286. https://doi.org/10.1680/stbu.10.00015
  • [86] Meguro K., Soti R., Navaratnaraj S., Numada M., Dynamic testing of masonary houses retrofitted by bamboo band meshes. JSCE Journal of Earthquake Engineering, 68(4) (2012) I_760-I_765. https://doi.org/10.2208/jscejseee.68.I_760
  • [87] Carozzi FG., Poggi C., Bertolesi E., Milani G., Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation. Composite Structures, 187 (2018) 466-480. https://doi.org/10.1016/j.compstruct.2017.12.075
  • [88] Anania L., Badalà A., D’Agata G., The post strengthening of the masonry vaults by the Ω-Wrap technique based on the use of C-FRP. Construction and Building Materials, 47 (2013) 1053-1068. https://doi.org/10.1016/j.conbuildmat.2013.05.012
  • [89] Valvona F., Toti J., Gattulli V., Potenza F., Effective seismic strengthening and monitoring of a masonry vault by using Glass Fiber Reinforced Cementitious Matrix with embedded Fiber Bragg Grating sensors. Composites Part B: Engineering, 113 (2017) 355-370. https://doi.org/10.1016/j.compositesb.2017.01.024
  • [90] Zampieri P., Simoncello N., Tetougueni CD., Pellegrino C., A review of methods for strengthening of masonry arches with composite materials. Engineering Structures, 171 (2018) 154-169. https://doi.org/10.1016/j.engstruct.2018.05.070
  • [91] Garmendia L., Larrinaga P., San-Mateos R., San-José JT., Strengthening masonry vaults with organic and inorganic composites: an experimental approach. Materials & Design, 85 (2015) 102-114. https://doi.org/10.1016/j.matdes.2015.06.150
  • [92] Padalu PKVR., Vashisht R., Ramancharla PK., (2023). A Review on Construction Techniques and Structural Restoration of Ancient Masonry Buildings. In Goel MD, Kumar R, Gadve SS (ed) Structural Engineering Convention, Springer Nature Singapore, ss 335-350.
  • [93] Roca P., Cervera M., Gariup G., Pela’ L., Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 17 (2010) 299-325. https://doi.org/10.1007/s11831-010-9046-1
  • [94] Tomaževič M., Klemenc I., Seismic behaviour of confined masonry walls. Earthquake Engineering & Structural Dynamics, 26(10) (1997) 1059-1071. https://doi.org/10.1002/(SICI)1096-9845(199710)26:10<1059::AID-EQE694>3.0.CO;2-M
  • [95] Brignola A., Frumento S., Lagomarsino S., Podestà S., Identification of shear parameters of masonry panels through the in-situ diagonal compression test. International Journal of Architectural Heritage, 3(1) (2008) 52-73. https://doi.org/10.1080/15583050802138634
  • [96] Yardim Y., Lalaj O., Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing. Construction and Building Materials, 102 (2016) 149-154. https://doi.org/10.1016/j.conbuildmat.2015.10.095
  • [97] Darbhanzi A., Marefat M., Khanmohammadi M., Investigation of in-plane seismic retrofit of unreinforced masonry walls by means of vertical steel ties. Construction and Building Materials, 52 (2014) 122-129. https://doi.org/10.1016/j.conbuildmat.2013.11.020
  • [98] Spina G., Ramundo F., Mandara A., Masonry strengthening by metal tie-bars, a case study. Paper presented at the Structural Analysis of Historical Constructions. 4th International Seminar on Structural Analysis of Historical Constructions, Padova, İtalya, (2004).
  • [99] Ural A., Fırat FK., Tuğrulelçi Ş., Kara ME., Experimental and numerical study on effectiveness of various tie-rod systems in brick arches. Engineering Structures, 110 (2016) 209-221. https://doi.org/10.1016/j.engstruct.2015.11.038
  • [100] Tanriverdi S., Yavuz C., Investigation of the effects of clamp depths on the flexural behavior of walls in masonry walls. Construction and Building Materials, 393 (2023) 132081. https://doi.org/10.1016/j.conbuildmat.2023.132081
  • [101] Çelik T., Tanrıverdi Ş., Ural A., Fırat FK., Yığma yapılarda kullanılan kenetlerin yapı davranışına etkilerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3) (2021) 650-659. https://doi.org/10.35414/akufemubid.874494
  • [102] Ural A., Kara ME., Uslu S., Kenet ve zıvanaların yığma duvarların kesme (kayma) davranışına etkisi, 5. Tarihi Eserlerin Güçlendirilmesi ve Geleceğe Güvenle Devredilmesi Sempozyumu, Erzurum, 537-548, (2015)
  • [103] Da Porto F., Guidi G., Dalla Benetta M., Verlato N., Combined in-plane/out-ofplane experimental behaviour of reinforced and strengthened infill masonry walls. 12th Canadian Masonry Symposium, British Columbia, Kanada, (2013).
  • [104] Martins A., Vasconcelos G., Fangueiro R., Cunha F., Experimental assessment of an innovative strengthening material for brick masonry infills. Composites Part B: Engineering, 80 (2015) 328-342. https://doi.org/10.1016/j.compositesb.2015.06.012
  • [105] Çakmak AŞ., Moropoulou A., Mullen CL., Interdisciplinary study of dynamic behavior and earthquake response of Hagia Sophia. Soil dynamics and earthquake engineering, 14(2) (1995) 125-133. https://doi.org/10.1016/0267-7261(94)00031-B
  • [106] Aydıngün GŞ., Tarih boyunca yaşanan depremler sonrası Ayasofya onarımları. Deprem Sempozyumu, Kocaeli, (2005).
  • [107] Kocaman İ., Mercimek Ö., Gürbüz M., Erbaş Y., Anıl Ö., The effect of Kahramanmaraş earthquakes on historical Malatya Yeni Mosque. Engineering Failure Analysis, 161 (2024) 108310. https://doi.org/10.1016/j.engfailanal.2024.108310
  • [108] ICOMOS. Carte Del Resturo, (1931). https://www.icomos.org.tr/Dosyalar/ICOMOSTR_tr0660878001536681682.pdf, Erişim 3 Mayıs 2024
  • [109] UNESCO. Lahey Konvansiyonu, (1954). https://unesco.org.tr/Home/Page/60?slug=Yerlerinden-Edilmiş-Kültür-Varlıkları-İhtisas-Komitesi, Erişim 3 Mayıs 2024
  • [110] ICOMOS. Venedik Tüzüğü, (1964). https://www.icomos.org.tr/Dosyalar/ICOMOSTR_tr0243603001536681730.pdf, Erişim 3 Mayıs 2024
  • [111] Kutlu İ., Şimşek D., Mardin Mimarlık Mirasında Mimarbaşı Lole'nin Rolü. İDEALKENT, 16(44) (2024) 710-746. https://doi.org/10.31198/idealkent.1456731
  • [112] Bekar İ., Kutlu I., Ergün R., Importance performance analysis for sustainability of reused historical building: Mardin Sabanci City Museum and art gallery. Open House International, 49(3) (2024) 550-573. https://doi.org/10.1108/OHI-04-2023-0080
  • [113] Semerci F., Mardin kireçtaşının yapı malzemesi olarak kullanımına yönelik analizlerinin yapılması: Kasımiye Medresesi örneği. Journal of Architectural Sciences and Applications, 2(2) (2017) 60-79.
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Yapım Mühendisliği, Mimari Mühendislik, Yapım Teknolojileri
Bölüm Tasarım ve Teknoloji
Yazarlar

İzzettin Kutlu 0000-0002-5546-5548

Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Haziran 2024
Kabul Tarihi 14 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Kutlu, İ. (2024). Yığma Yapılarda Güçlendirme Tekniklerinin Koruma İlkeleri ile İlişkilendirilmesi ve Mardin Tarihi Dokusunda Değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 979-1005. https://doi.org/10.29109/gujsc.1497946

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526