Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 12 Sayı: 4, 819 - 831, 31.12.2024
https://doi.org/10.29109/gujsc.1517800

Öz

Kaynakça

  • [1] International Energy Agency, Electricity 2024: Analysis and Forecast to 2026, (2024) 1-170.
  • [2] Hasan, M. M., & Wyseure, G., Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador, Water Science, and Engineering, 11(2), 157-66, (2018).
  • [3] Ullah, A., Topcu, A., Doğan, M. & Imran, M., Exploring the nexus among hydroelectric power generation, financial development, and economic growth: Evidence from the most significant 10 hydroelectric power-generating countries, Energy Strategy Reviews, 52, 101339, (2024).
  • [4] I. W. E. T. O. C. Pathway, World Energy Transitions Outlook 2023: 1.5°C Pathway, Abu Dhabi, 2023.
  • [5] Beheshti, M., Heidari, A., & Saghafian, B., Susceptibility of hydropower generation to climate change: Karun III Dam case study, Water, 11(5), 1025, (2019).
  • [6] Lumbroso, D., Woolhouse, G., & Jones, L., A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa, Climatic Change, 133, 621-633, (2015).
  • [7] Zhao, X., Huang, G., Li, Y., & Lu, C., Responses of hydroelectricity generation to streamflow drought under climate change, Renewable and Sustainable Energy Reviews, 174, 113-141, (2023).
  • [8] De Souza Dias, V., Pereire da Luz, M., Medero, G. M., & Tarley Ferreira Nascimento, D., An overview of hydropower reservoirs in Brazil: Current situation, future perspectives and impacts of climate change, Water, 10(5), 592, (2018).
  • [9] Huang, J., Cang, J., Zhou, Z., & Gholinia F., Evaluation effect climate parameters change on hydropower production and energy demand by RCPs scenarios and the Developed Pathfinder (DPA) algorithm, Energy Reports, 7, 5455-5466, (2021).
  • [10] Fang, W., Chen, Y., & Xue, Q., Survey on research of RNN-based spatio-temporal sequence prediction algorithms, Journal on Big Data, 3(3), 97-110, (2021).
  • [11] Wang, H., Wu, X., & Gholinia, F., Forecasting hydropower generation by GFDL‐CM3 climate model and hybrid hydrological‐Elman neural network model based on Improved Sparrow Search Algorithm (ISSA), Concurrency and Computation: Practice and Experience, 33(24), e6476, (2021).
  • [12] Huangpeng, Q., Huang, W., & Gholinia, F., Forecast of the hydropower generation under influence of climate change based on RCPs and Developed Crow Search Optimization Algorithm, Energy Reports, 7, 385-397, (2021).
  • [13] Boadi, S. A., & Owusu, K., Impact of climate change and variability on hydropower in Ghana, African Geographical Review, 38(1), 19-31, (2019).
  • [14] Hamududu, B. H., & Killingtveit, Å., Hydropower production in future climate scenarios; the case for the Zambezi River, Energies, 9(7), 502, (2016).
  • [15] Uamusse, M. M., Tussupova, K., & Persson, K. M., Climate change effects on hydropower in Mozambique, Applied Sciences, 10(14), 4842, (2020).
  • [16] Khaniya, B., Karunanayake, C., Gunathilake, M. B., & Rathnayake, U., Projection of future hydropower generation in samanalawewa power plant, Sri Lanka, Mathematical Problems in Engineering, 1-11, (2020).
  • [17] Shrestha, A., Shrestha, S., Tingsanchali, T., Budhathoki, A., & Ninsawat, S., Adapting hydropower production to climate change: A case study of Kulekhani Hydropower Project in Nepal, Journal of Cleaner Production, 279, 123483, (2021).
  • [18] Karakuş, M. Ö., Impact of climatic factors on the prediction of hydroelectric power generation: a deep CNN-SVR approach, Geocarto International, 38(1), 2253203, (2023).
  • [19] Babacan, H. T., & Yüksek, Ö., Investigation of climate change impacts on daily streamflow extremes in Eastern Black Sea Basin, Turkey, Physics and Chemistry of the Earth, Parts A/B/C, 134, 103599, (2024).
  • [20] Benzer, S., New Record Of The Kizilirmak Killifish (Aphanius Marassantensis Pfleiderer, Geiger & Herder, 2014) From Süreyyabey Dam Lake In Yeşilirmak Basin, Mugla Journal of Science and Technology, 4(1), 41-45, (2018).
  • [21] Yılmaz, D., Süreyyabey Barajı Dolusavak Kazı Şevlerinde Yaşanan Zemin Hareketlerinin Analizi, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 4(1), 23-31, (2023).
  • [22] Salcedo-Sanz, S., Cornejo-Bueno, L., Prieto, L., Paredes, D., & García-Herrera, R., Feature selection in machine learning prediction systems for renewable energy applications, Renewable and Sustainable Energy Reviews, 90, 728-741, (2018).
  • [23] Rao, S., Poojary, P., Somaiya, J., & Mahajan, P., A comparative study between various preprocessing techniques for machine learning, Int. J. Eng. Appl. Sci. Technol, 5(3), 2455-2143, (2020).
  • [24] Gogtay, N.J., & Thatte, U. M., Principles of correlation analysis, Journal of the Association of Physicians of India, 65(3), 78-81, (2017).
  • [25] Ratner, B., The correlation coefficient: Its values range between+ 1/− 1, or do they?, Journal of targeting, measurement and analysis for marketing, 17(2), 139-142, (2009).
  • [26] Asuero, A. G., Sayago, A., & González, A., The correlation coefficient: An overview, Critical reviews in analytical chemistry, 36(1), 41-59, (2006).
  • [27] Duzkaya, H., & Beroual, A., Statistical analysis of AC dielectric strength of natural ester-based ZnO nanofluids, 14(1), 99, (2020).
  • [28] Victoria A. H., & Maragatham, G., Automatic tuning of hyperparameters using Bayesian optimization, Evolving Systems, 12(1), 217-223, (2021).
  • [29] Yu, T., & Zhu, H., Hyper-parameter optimization: A review of algorithms and applications, arXiv preprint arXiv:2003.05689, (2020).
  • [30] Shrestha, A., & Mahmood, A., Review of deep learning algorithms and architectures, IEEE Access, 7, 53040-53065, (2019).
  • [31] Yang, L., & Shami, A., On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing, 415, 295-316, (2020).
  • [32] Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H., Hyperparameter optimization for machine learning models based on Bayesian optimization, Journal of Electronic Science and Technology, 17(1), 26-40, (2019).
  • [33] Habtemariam, E. T., Kekeba, K., Martínez-Ballesteros, M., & Martínez-Álvarez, F., A Bayesian optimization-based LSTM model for wind power forecasting in the Adama district, Ethiopia, Energies, 16(5), 2317, (2023).
  • [34] Sherstinsky, A., Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, Physica D: Nonlinear Phenomena, 404, 132306, (2020).
  • [35] Sahoo, B. B., Jha, R., Singh, A., & Kumar, D., Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting, Acta Geophysica, 67(5), 1471-1481, (2019).
  • [36] Wang, Y., Zhu, S., & Li, C., Research on multistep time series prediction based on LSTM, in 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), 1155-1159 (2019).
  • [37] Jailani, N. L. M, Dhanasegaran, J. K., Alkawsi, G., Alkahtani, A. A., Phing, C. C., Baashar, Y., & Tiong, S. K., Investigating the power of LSTM-based models in solar energy forecasting, Processes, 11(5), 1382, (2023).
  • [38] Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., & Jiang, J., Comparison of long short term memory networks and the hydrological model in runoff simulation, Water, 12(1), 175, (2020).
  • [39] Ekanayake, P., Wickramasinghe, L., Jayasinghe, J. J. W., & Rathnayake, U., Regression-based prediction of power generation at samanalawewa hydropower plant in Sri Lanka using machine learning, Mathematical Problems in Engineering, 1-12, (2021).
  • [40] Gzar, D. A., Mahmood, A. M., & Abbas, M. K., A Comparative Study of Regression Machine Learning Algorithms: Tradeoff Between Accuracy and Computational Complexity, Mathematical Modelling of Engineering Problems, 9(5), (2022).
  • [41] Wu, J.,& Cheng, E., A novel hybrid particle swarm optimization for feature selection and kernel optimization in support vector regression, in 2010 International Conference on Computational Intelligence and Security, 189-194, (2010).
  • [42] Ly, H. -B., Nguyen, T, -A., & Pham, B. T., Estimation of soil cohesion using machine learning method: A random forest approach, Advances in civil engineering, 1, 8873993, (2021).
  • [43] Javed, U., Fraz, M. M., Mahmood, I., Shahzad, M., & Arif, O., Forecasting of electricity generation for hydro power plants, in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 2020: IEEE, 32-36 (2020).

Estimation of Hydroelectric Power Generation Forecasting and Analysis of Climate Factors with Deep Learning Methods: A Case Study in Yozgat Province in Turkey

Yıl 2024, Cilt: 12 Sayı: 4, 819 - 831, 31.12.2024
https://doi.org/10.29109/gujsc.1517800

Öz

Hydroelectric power is a significant renewable energy source for the development of countries. However, climatic data can impact power generation in hydroelectric power plants. Hydroelectric power forecasting is conducted in this study using Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and hybrid LSTM-SVR models based on climatic data. The dataset consists of climate data from the Yozgat Meteorology Directorate in Turkey from 2007 to 2021 and power data obtained from the Süreyyabey Hydroelectric Power Plant in Yozgat. The correlation coefficient examines the relationship between climate data and monthly hydroelectric power generation. The hyper-parameters of the models are adjusted using the Bayesian Optimization (BO) method. The performance of monthly hydroelectric power prediction models is assessed using metrics such as correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). When trained using 11 and 12 climate parameters, the SVR model exhibits an R-value close to 1, and MAE and RMSE values close to 0 are observed. Additionally, regarding training time, the SVR model achieves accurate predictions with the shortest duration and the least error compared to other models.

Kaynakça

  • [1] International Energy Agency, Electricity 2024: Analysis and Forecast to 2026, (2024) 1-170.
  • [2] Hasan, M. M., & Wyseure, G., Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador, Water Science, and Engineering, 11(2), 157-66, (2018).
  • [3] Ullah, A., Topcu, A., Doğan, M. & Imran, M., Exploring the nexus among hydroelectric power generation, financial development, and economic growth: Evidence from the most significant 10 hydroelectric power-generating countries, Energy Strategy Reviews, 52, 101339, (2024).
  • [4] I. W. E. T. O. C. Pathway, World Energy Transitions Outlook 2023: 1.5°C Pathway, Abu Dhabi, 2023.
  • [5] Beheshti, M., Heidari, A., & Saghafian, B., Susceptibility of hydropower generation to climate change: Karun III Dam case study, Water, 11(5), 1025, (2019).
  • [6] Lumbroso, D., Woolhouse, G., & Jones, L., A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa, Climatic Change, 133, 621-633, (2015).
  • [7] Zhao, X., Huang, G., Li, Y., & Lu, C., Responses of hydroelectricity generation to streamflow drought under climate change, Renewable and Sustainable Energy Reviews, 174, 113-141, (2023).
  • [8] De Souza Dias, V., Pereire da Luz, M., Medero, G. M., & Tarley Ferreira Nascimento, D., An overview of hydropower reservoirs in Brazil: Current situation, future perspectives and impacts of climate change, Water, 10(5), 592, (2018).
  • [9] Huang, J., Cang, J., Zhou, Z., & Gholinia F., Evaluation effect climate parameters change on hydropower production and energy demand by RCPs scenarios and the Developed Pathfinder (DPA) algorithm, Energy Reports, 7, 5455-5466, (2021).
  • [10] Fang, W., Chen, Y., & Xue, Q., Survey on research of RNN-based spatio-temporal sequence prediction algorithms, Journal on Big Data, 3(3), 97-110, (2021).
  • [11] Wang, H., Wu, X., & Gholinia, F., Forecasting hydropower generation by GFDL‐CM3 climate model and hybrid hydrological‐Elman neural network model based on Improved Sparrow Search Algorithm (ISSA), Concurrency and Computation: Practice and Experience, 33(24), e6476, (2021).
  • [12] Huangpeng, Q., Huang, W., & Gholinia, F., Forecast of the hydropower generation under influence of climate change based on RCPs and Developed Crow Search Optimization Algorithm, Energy Reports, 7, 385-397, (2021).
  • [13] Boadi, S. A., & Owusu, K., Impact of climate change and variability on hydropower in Ghana, African Geographical Review, 38(1), 19-31, (2019).
  • [14] Hamududu, B. H., & Killingtveit, Å., Hydropower production in future climate scenarios; the case for the Zambezi River, Energies, 9(7), 502, (2016).
  • [15] Uamusse, M. M., Tussupova, K., & Persson, K. M., Climate change effects on hydropower in Mozambique, Applied Sciences, 10(14), 4842, (2020).
  • [16] Khaniya, B., Karunanayake, C., Gunathilake, M. B., & Rathnayake, U., Projection of future hydropower generation in samanalawewa power plant, Sri Lanka, Mathematical Problems in Engineering, 1-11, (2020).
  • [17] Shrestha, A., Shrestha, S., Tingsanchali, T., Budhathoki, A., & Ninsawat, S., Adapting hydropower production to climate change: A case study of Kulekhani Hydropower Project in Nepal, Journal of Cleaner Production, 279, 123483, (2021).
  • [18] Karakuş, M. Ö., Impact of climatic factors on the prediction of hydroelectric power generation: a deep CNN-SVR approach, Geocarto International, 38(1), 2253203, (2023).
  • [19] Babacan, H. T., & Yüksek, Ö., Investigation of climate change impacts on daily streamflow extremes in Eastern Black Sea Basin, Turkey, Physics and Chemistry of the Earth, Parts A/B/C, 134, 103599, (2024).
  • [20] Benzer, S., New Record Of The Kizilirmak Killifish (Aphanius Marassantensis Pfleiderer, Geiger & Herder, 2014) From Süreyyabey Dam Lake In Yeşilirmak Basin, Mugla Journal of Science and Technology, 4(1), 41-45, (2018).
  • [21] Yılmaz, D., Süreyyabey Barajı Dolusavak Kazı Şevlerinde Yaşanan Zemin Hareketlerinin Analizi, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 4(1), 23-31, (2023).
  • [22] Salcedo-Sanz, S., Cornejo-Bueno, L., Prieto, L., Paredes, D., & García-Herrera, R., Feature selection in machine learning prediction systems for renewable energy applications, Renewable and Sustainable Energy Reviews, 90, 728-741, (2018).
  • [23] Rao, S., Poojary, P., Somaiya, J., & Mahajan, P., A comparative study between various preprocessing techniques for machine learning, Int. J. Eng. Appl. Sci. Technol, 5(3), 2455-2143, (2020).
  • [24] Gogtay, N.J., & Thatte, U. M., Principles of correlation analysis, Journal of the Association of Physicians of India, 65(3), 78-81, (2017).
  • [25] Ratner, B., The correlation coefficient: Its values range between+ 1/− 1, or do they?, Journal of targeting, measurement and analysis for marketing, 17(2), 139-142, (2009).
  • [26] Asuero, A. G., Sayago, A., & González, A., The correlation coefficient: An overview, Critical reviews in analytical chemistry, 36(1), 41-59, (2006).
  • [27] Duzkaya, H., & Beroual, A., Statistical analysis of AC dielectric strength of natural ester-based ZnO nanofluids, 14(1), 99, (2020).
  • [28] Victoria A. H., & Maragatham, G., Automatic tuning of hyperparameters using Bayesian optimization, Evolving Systems, 12(1), 217-223, (2021).
  • [29] Yu, T., & Zhu, H., Hyper-parameter optimization: A review of algorithms and applications, arXiv preprint arXiv:2003.05689, (2020).
  • [30] Shrestha, A., & Mahmood, A., Review of deep learning algorithms and architectures, IEEE Access, 7, 53040-53065, (2019).
  • [31] Yang, L., & Shami, A., On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing, 415, 295-316, (2020).
  • [32] Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H., Hyperparameter optimization for machine learning models based on Bayesian optimization, Journal of Electronic Science and Technology, 17(1), 26-40, (2019).
  • [33] Habtemariam, E. T., Kekeba, K., Martínez-Ballesteros, M., & Martínez-Álvarez, F., A Bayesian optimization-based LSTM model for wind power forecasting in the Adama district, Ethiopia, Energies, 16(5), 2317, (2023).
  • [34] Sherstinsky, A., Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, Physica D: Nonlinear Phenomena, 404, 132306, (2020).
  • [35] Sahoo, B. B., Jha, R., Singh, A., & Kumar, D., Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting, Acta Geophysica, 67(5), 1471-1481, (2019).
  • [36] Wang, Y., Zhu, S., & Li, C., Research on multistep time series prediction based on LSTM, in 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), 1155-1159 (2019).
  • [37] Jailani, N. L. M, Dhanasegaran, J. K., Alkawsi, G., Alkahtani, A. A., Phing, C. C., Baashar, Y., & Tiong, S. K., Investigating the power of LSTM-based models in solar energy forecasting, Processes, 11(5), 1382, (2023).
  • [38] Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., & Jiang, J., Comparison of long short term memory networks and the hydrological model in runoff simulation, Water, 12(1), 175, (2020).
  • [39] Ekanayake, P., Wickramasinghe, L., Jayasinghe, J. J. W., & Rathnayake, U., Regression-based prediction of power generation at samanalawewa hydropower plant in Sri Lanka using machine learning, Mathematical Problems in Engineering, 1-12, (2021).
  • [40] Gzar, D. A., Mahmood, A. M., & Abbas, M. K., A Comparative Study of Regression Machine Learning Algorithms: Tradeoff Between Accuracy and Computational Complexity, Mathematical Modelling of Engineering Problems, 9(5), (2022).
  • [41] Wu, J.,& Cheng, E., A novel hybrid particle swarm optimization for feature selection and kernel optimization in support vector regression, in 2010 International Conference on Computational Intelligence and Security, 189-194, (2010).
  • [42] Ly, H. -B., Nguyen, T, -A., & Pham, B. T., Estimation of soil cohesion using machine learning method: A random forest approach, Advances in civil engineering, 1, 8873993, (2021).
  • [43] Javed, U., Fraz, M. M., Mahmood, I., Shahzad, M., & Arif, O., Forecasting of electricity generation for hydro power plants, in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 2020: IEEE, 32-36 (2020).
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç)
Bölüm Tasarım ve Teknoloji
Yazarlar

Feyza Nur Çakıcı 0000-0002-5042-7630

Suleyman Sungur Tezcan 0000-0001-6846-8222

Hıdır Düzkaya 0000-0002-2157-0438

Erken Görünüm Tarihi 21 Kasım 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 17 Temmuz 2024
Kabul Tarihi 21 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Çakıcı, F. N., Tezcan, S. S., & Düzkaya, H. (2024). Estimation of Hydroelectric Power Generation Forecasting and Analysis of Climate Factors with Deep Learning Methods: A Case Study in Yozgat Province in Turkey. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 819-831. https://doi.org/10.29109/gujsc.1517800

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526