Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluating AI-Based Energy Management Strategies for Electric Vehicles using SWARA - weighted Pythagorean Fuzzy MULTIMOORA

Yıl 2025, Cilt: 13 Sayı: 3
https://doi.org/10.29109/gujsc.1566197

Öz

The growing adoption of electric vehicles (EVs) has formed a pressing need for intelligent energy management systems to extend battery life, improve efficiency and encourage the use of sustainable energy sources. As the complexity of energy optimization increases, the integration of artificial intelligence (AI) has become essential for enabling real-time decision-making and adaptive control. However, a significant gap remains in the literature regarding the comprehensive evaluation and prioritization of AI-based energy management strategies for EVs. This study addresses this gap by developing a multi-criteria decision-making (MCDM) framework that combines the Stepwise Weight Assessment Ratio Analysis (SWARA) method to determine the importance of evaluation criteria with the Pythagorean Fuzzy MULTIMOORA method to rank alternative strategies. The results show that Smart Battery Management Systems is the most critical strategy, followed by Predictive Energy Optimization and AI-Enabled Smart Charging and Grid Integration. A sensitivity analysis involving 21 weight variation scenarios confirms the robustness and stability of the suggested model. The findings offer practical insights for policymakers and professionals in engineering and present a flexible methodological framework that can be applied to other complex decision-making problems in sustainable energy and transportation systems.

Kaynakça

  • [1] Khan, S. U., Mehmood K. K., Haider, Z. M., Rafique M. K., Khan M. O., & Kim, C. H., 2021. Coordination of multiple electric vehicle aggregators for peak shaving and valley filling in distribution feeders. Energies, 14(2), 352.
  • [2] Eurostat. Final energy consumption in transport. 2025. Available on https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Final_energy_consumption_in_transport_-_detailed_statistics.
  • [3] Eurostat. Electricity price statistics. 2025. Available on https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics.
  • [4] Eurostat. Complete energy balances. Online data code: nrg_bal_c. https://doi.org/10.2908/NRG_BAL_C
  • [5] Lin, Y., Chu, L., Hu, J., Hou, Z., Li, J., Jiang J. & Zhang, Y., 2024. Progress and summary of reinforcement learning on energy management of MPS-EV. Heliyon, 10(1).
  • [6] Shakeel, F. M. and Malik, O. P., 2022. ANFIS based energy management system for V2G integrated micro-grids. Electric Power Components and Systems, 50(11-12), 584-599.
  • [7] Pardhasaradhi, B. and Shilaja, C., 2023. A deep reinforced markov action learning based hybridized energy management strategy for electric vehicle application. Journal of Energy Storage, 74, 109373.
  • [8] Badran, M. A. and Toha, S. F., 2024. Employment of Artificial Intelligence (AI) Techniques in Battery Management System (BMS) for Electric Vehicles (EV): Issues and Challenges. Pertanika Journal of Science & Technology, 32(2).
  • [9] Ghalkhani, M. and Habibi, S., 2022. Review of the Li-ion battery, thermal management, and AI-based battery management system for EV application. Energies, 16(1), 185.
  • [10] Alrifaie, M. F., Habbal, A. and Kim, B. S., 2024. A fuzzy-multi attribute decision making scheme for efficient user-centric EV charging station selection. IEEE Access.
  • [11] Ghoushchi, S. J., Haghshenas, S. S., Vahabzadeh, S., Guido, G. and Geem, Z. W., 2024. An integrated MCDM approach for enhancing efficiency in connected autonomous vehicles through augmented intelligence and IoT integration. Results in Engineering, 23, 102626.
  • [12] Stecyk, A. and Miciuła, I., 2023. Harnessing the power of artificial intelligence for collaborative energy optimization platforms. Energies, 16(13), 5210.
  • [13] Imran, S. M., Rameshan, N. M., Anand, C. J., Martin, Tiwari, N. M. and Mohan, V., 2024. Fuzzy Decision-Making on Strategies for Maximizing the Utility of Electric Vehicles. In 2024 IEEE Third International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (pp. 347-352). IEEE.
  • [14] Zadeh, L.A., 1965. Fuzzy sets, Inf. Control 8 (3), 338–353.
  • [15] Yager R.R., 2013. Pythagorean fuzzy subsets, in: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, pp. 57–61.
  • [16] Keršuliene, V., Zavadskas, E. K. and Turskis, Z., 2010. Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258.
  • [17] Brauers, W. K. M. and Zavadskas, E. K., 2010. Project management by MULTIMOORA as an instrument for transition economies. Technological and economic development of economy, 16(1), 5-24.
  • [18] Xia, G., Cao, L. and Bi, G., 2017. A review on battery thermal management in electric vehicle application. Journal of power sources, 367, 90-105.
  • [19] Hwang, C. L., Yoon, K. 1981. Methods for multiple attribute decision making. In Multiple attribute decision making: methods and applications a state-of-the-art survey, Berlin, Heidelberg: Springer Berlin Heidelberg, 58-191.
  • [20] Bakioglu, G. 2025. Enhancing efficiency in railway freight logistics using a two-stage decision support technique with Q-rung orthopair fuzzy sets. Canadian Journal of Civil Engineering, 52(5), 770-795.
  • [21] Ali, M. U., Zafar, A., Nengroo, S. H., Hussain, S., Junaid Alvi, M. & Kim, H. J., 2019. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation. Energies, 12(3), 446.
  • [22] Cauwer, C. De, Coosemans, W. T., Faid, S., and Van Mierlo, J. 2017. A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies, 10(5), 608.
  • [23] Bakioğlu, G., Silgu, M. A., Özcanan, S., Gökaşar, I., Büyük, M., Çelikoğlu, H. B., Osman, A. 2015, September. Incident detection algorithms: A literature review. In Proceedings of the 1st IRF Europe & Central Asia Regional Congress & Exhibition, Istanbul, Turkey, 15-18.

Elektrikli Araçlar için Yapay Zekâ Tabanlı Enerji Yönetim Stratejilerinin SWARA Ağırlıklı Pisagor Bulanık MULTIMOORA Yöntemi ile Değerlendirilmesi

Yıl 2025, Cilt: 13 Sayı: 3
https://doi.org/10.29109/gujsc.1566197

Öz

Elektrikli araçların yaygınlaşması, verimliliği artırmak, batarya ömrünü uzatmak ve yenilenebilir enerji kaynaklarını entegre etmek amacıyla akıllı enerji yönetim sistemlerine olan ihtiyacı artırmıştır. Artan karmaşıklık karşısında, yapay zekâ entegrasyonu gerçek zamanlı karar verme ve uyarlanabilir kontrol açısından büyük önem taşımaktadır. Ancak literatürde, elektrikli araçlar için yapay zekâ tabanlı enerji yönetim stratejilerinin kapsamlı şekilde değerlendirilmesine yönelik sınırlı çalışma bulunmaktadır. Bu çalışmada, değerlendirme kriterlerinin önemini belirlemek için SWARA, stratejileri önceliklendirmek için Pisagor Bulanık MULTIMOORA yöntemlerinin entegre edildiği çok kriterli karar verme tabanlı bir model geliştirilmiştir. Bulgulara göre, “Akıllı Batarya Yönetim Sistemleri” en öncelikli strateji olarak belirlenmiş, ardından “Tahmine Dayalı Enerji Optimizasyonu” ve “Yapay Zekâ Tabanlı Akıllı Şarj ve Şebeke Entegrasyonu” gelmiştir. Yirmi bir senaryoda yapılan duyarlılık analizi, modelin sağlamlığını ortaya koymuştur. Elde edilen sonuçlar, politika yapıcılar ve mühendislik uzmanları için stratejik karar alma süreçlerinde yol gösterici niteliktedir.

Kaynakça

  • [1] Khan, S. U., Mehmood K. K., Haider, Z. M., Rafique M. K., Khan M. O., & Kim, C. H., 2021. Coordination of multiple electric vehicle aggregators for peak shaving and valley filling in distribution feeders. Energies, 14(2), 352.
  • [2] Eurostat. Final energy consumption in transport. 2025. Available on https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Final_energy_consumption_in_transport_-_detailed_statistics.
  • [3] Eurostat. Electricity price statistics. 2025. Available on https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics.
  • [4] Eurostat. Complete energy balances. Online data code: nrg_bal_c. https://doi.org/10.2908/NRG_BAL_C
  • [5] Lin, Y., Chu, L., Hu, J., Hou, Z., Li, J., Jiang J. & Zhang, Y., 2024. Progress and summary of reinforcement learning on energy management of MPS-EV. Heliyon, 10(1).
  • [6] Shakeel, F. M. and Malik, O. P., 2022. ANFIS based energy management system for V2G integrated micro-grids. Electric Power Components and Systems, 50(11-12), 584-599.
  • [7] Pardhasaradhi, B. and Shilaja, C., 2023. A deep reinforced markov action learning based hybridized energy management strategy for electric vehicle application. Journal of Energy Storage, 74, 109373.
  • [8] Badran, M. A. and Toha, S. F., 2024. Employment of Artificial Intelligence (AI) Techniques in Battery Management System (BMS) for Electric Vehicles (EV): Issues and Challenges. Pertanika Journal of Science & Technology, 32(2).
  • [9] Ghalkhani, M. and Habibi, S., 2022. Review of the Li-ion battery, thermal management, and AI-based battery management system for EV application. Energies, 16(1), 185.
  • [10] Alrifaie, M. F., Habbal, A. and Kim, B. S., 2024. A fuzzy-multi attribute decision making scheme for efficient user-centric EV charging station selection. IEEE Access.
  • [11] Ghoushchi, S. J., Haghshenas, S. S., Vahabzadeh, S., Guido, G. and Geem, Z. W., 2024. An integrated MCDM approach for enhancing efficiency in connected autonomous vehicles through augmented intelligence and IoT integration. Results in Engineering, 23, 102626.
  • [12] Stecyk, A. and Miciuła, I., 2023. Harnessing the power of artificial intelligence for collaborative energy optimization platforms. Energies, 16(13), 5210.
  • [13] Imran, S. M., Rameshan, N. M., Anand, C. J., Martin, Tiwari, N. M. and Mohan, V., 2024. Fuzzy Decision-Making on Strategies for Maximizing the Utility of Electric Vehicles. In 2024 IEEE Third International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (pp. 347-352). IEEE.
  • [14] Zadeh, L.A., 1965. Fuzzy sets, Inf. Control 8 (3), 338–353.
  • [15] Yager R.R., 2013. Pythagorean fuzzy subsets, in: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, pp. 57–61.
  • [16] Keršuliene, V., Zavadskas, E. K. and Turskis, Z., 2010. Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258.
  • [17] Brauers, W. K. M. and Zavadskas, E. K., 2010. Project management by MULTIMOORA as an instrument for transition economies. Technological and economic development of economy, 16(1), 5-24.
  • [18] Xia, G., Cao, L. and Bi, G., 2017. A review on battery thermal management in electric vehicle application. Journal of power sources, 367, 90-105.
  • [19] Hwang, C. L., Yoon, K. 1981. Methods for multiple attribute decision making. In Multiple attribute decision making: methods and applications a state-of-the-art survey, Berlin, Heidelberg: Springer Berlin Heidelberg, 58-191.
  • [20] Bakioglu, G. 2025. Enhancing efficiency in railway freight logistics using a two-stage decision support technique with Q-rung orthopair fuzzy sets. Canadian Journal of Civil Engineering, 52(5), 770-795.
  • [21] Ali, M. U., Zafar, A., Nengroo, S. H., Hussain, S., Junaid Alvi, M. & Kim, H. J., 2019. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation. Energies, 12(3), 446.
  • [22] Cauwer, C. De, Coosemans, W. T., Faid, S., and Van Mierlo, J. 2017. A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies, 10(5), 608.
  • [23] Bakioğlu, G., Silgu, M. A., Özcanan, S., Gökaşar, I., Büyük, M., Çelikoğlu, H. B., Osman, A. 2015, September. Incident detection algorithms: A literature review. In Proceedings of the 1st IRF Europe & Central Asia Regional Congress & Exhibition, Istanbul, Turkey, 15-18.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ulaştırma Mühendisliği, Çok Ölçütlü Karar Verme
Bölüm Tasarım ve Teknoloji
Yazarlar

Gözde Bakioğlu 0000-0003-3754-2631

Erken Görünüm Tarihi 19 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 24 Nisan 2025
Kabul Tarihi 3 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Bakioğlu, G. (2025). Evaluating AI-Based Energy Management Strategies for Electric Vehicles using SWARA - weighted Pythagorean Fuzzy MULTIMOORA. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1566197

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526