Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance of L-type Furniture Corner Joints Connected with Dowels Produced in Different Orientations with 3D Printing Technology

Yıl 2025, Cilt: 13 Sayı: 3, 1345 - 1357, 30.09.2025
https://doi.org/10.29109/gujsc.1727452

Öz

The aim of this study was to investigate both experimentally and numerically the moment capacities and elasticities of L-type furniture corner joints with case construction joined by dowels produced in different orientations with three-dimensional (3D) printing technology. The dowels were utilized within the scope of the study were produced by printed in two different orientations (vertical and horizontal) and thus effect of the printing orientation on the performance of the joints was investigated. Two different filament materials, Acrylonitrile Butadiene Styrene (ABS) and Acrylonitrile Styrene Acrylate (ASA), were preferred in the production of dowels. The produced dowels were used as fasteners in L-type corner joints. In the study, a total of 80 L-type corner joint specimens were prepared with 2 different printing orientation (horizontal and vertical), 2 different number of dowels (2 dowels, 3 dowels) and 10 replications of each specimen, and 40 of them were tested under static diagonal tension and the remaining 40 were tested under static diagonal compression load. In addition, numerical analyses were performed for each group by finite element method (FEM). According to the test results, it was observed that the doweled joints produced from ASA gave higher values than the doweled joints produced from ABS material, and the doweled joints produced in the horizontal orientation gave higher values than the doweled joints produced in the vertical orientation. It was also observed that increasing the number of dowels in the joints from 2 to 3 increased the moment capacity and elasticity of the joints. As a result of the study, the numerical analyses performed by the finite element method were found to be consistent with the actual experimental results and observed deformation characteristics in terms of both forces and stresses.

Kaynakça

  • [1] Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 2015;80:369–78. https://doi.org/https://doi.org/10.1016/j.compositesb.2015.06.013.
  • [2] Masood SH, Song WQ. Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater Des 2004;25:587–94. https://doi.org/https://doi.org/10.1016/j.matdes.2004.02.009.
  • [3] Farina I, Fabbrocino F, Carpentieri G, Modano M, Amendola A, Goodall R, et al. On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers. Compos Part B Eng 2016;90:76–85. https://doi.org/https://doi.org/10.1016/j.compositesb.2015.12.006.
  • [4] Kuo C-C, Liu L-C, Teng W-F, Chang H-Y, Chien F-M, Liao S-J, et al. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B Eng 2016;86:36–9. https://doi.org/https://doi.org/10.1016/j.compositesb.2015.10.005.
  • [5] Zou R, Xia Y, Liu S, Hu P, Hou W, Hu Q, et al. Isotropic and anisotropic elasticity and yielding of 3D printed material. Compos Part B Eng 2016;99:506–13. https://doi.org/10.1016/j.compositesb.2016.06.009.
  • [6] Rahim SL, Maidin S. Feasibility Study of Additive Manufacturing Technology Implementation in Malaysian Automotive Industry Using Analytic Hierarchy Process. Adv Mater Res 2014;903:450–4. https://doi.org/10.4028/www.scientific.net/AMR.903.450.
  • [7] Richter C, Lipson H. Untethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect. Artif Life 2011;17:73–86. https://doi.org/10.1162/artl_a_00020.
  • [8] Gebler M, Schoot Uiterkamp AJM, Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy 2014;74:158–67. https://doi.org/https://doi.org/10.1016/j.enpol.2014.08.033.
  • [9] Lee J-Y, Tan WS, An J, Chua CK, Tang CY, Fane AG, et al. The potential to enhance membrane module design with 3D printing technology. J Memb Sci 2016;499:480–90. https://doi.org/https://doi.org/10.1016/j.memsci.2015.11.008.
  • [10] Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003;21:157–61. https://doi.org/https://doi.org/10.1016/S0167-7799(03)00033-7.
  • [11] Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res - Part B Appl Biomater 2005;74:782–8. https://doi.org/10.1002/jbm.b.30291.
  • [12] Kasal A, Smardzewski J, Kuşkun T, Güray E. Analyses of L-Type Corner Joints Connected with Auxetic Dowels for Case Furniture. Materials (Basel) 2023;16. https://doi.org/10.3390/ma16134547.
  • [13] Pizzi A, Despres A, Mansouri HR, Leban J-M, Rigolet S. Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. J Adhes Sci Technol 2006;20:427–36. https://doi.org/10.1163/156856106777144327.
  • [14] Segovia C, Pizzi A. Performance of Dowel-Welded T-Joints for Wood Furniture. J Adhes Sci Technol 2009;23:2073–84. https://doi.org/10.1163/016942409X12526743387926.
  • [15] Stamm B, Natterer J, Navi P. Joining of wood layers by friction welding. J Adhes Sci Technol 2005;19:1129–39. https://doi.org/10.1163/156856105774429046.
  • [16] Zhang J-L, Eckelman CA. The bending moment resistance of single-dowel corner joints in case construction. For Prod J 1993;43:19.
  • [17] Smardzewski J, Prekrat S. Stress Distribution in Disconnected Furniture Joints. Electron J Polish Agric Univ 2002;5:1–7.
  • [18] Gustafsson S-I. Optimising ash wood chairs. Wood Sci Technol 1997;31:291–301. https://doi.org/10.1007/BF00702616.
  • [19] Koç KH, Kizilkaya K, Erdinler ES, Korkut DS. The use of finite element method in the furniture industry. African J Bus Manag 2011;5:855–65. https://doi.org/10.5897/AJBM10.551.
  • [20] Gonabadi H, Chen Y, Yadav A, Bull S. Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques. Int J Adv Manuf Technol 2022;118:1485–510. https://doi.org/10.1007/s00170-021-07940-4.
  • [21] Baharlou E, Ma J. Effect of raster orientation on large-scale robotic 3D printing of short carbon fiber-reinforced PLA composites. Addit Manuf Lett 2025;13. https://doi.org/10.1016/j.addlet.2025.100276.
  • [22] Porima. Porima Polimer Teknolojileri A.Ş. https://porima3d.com/products/porima-abs-filament (accessed June 20, 2025).
  • [23] International A. ASTM D3039 / D3039M - 17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials 2017.https://doi.org/10.1520/D3039_D3039M-17.

3B Yazıcı Teknolojisiyle Farklı Döküm Yönünde Üretilen Kavelalarla Bağlanmış L-tipi Mobilya Köşe Birleştirmelerin Performansı

Yıl 2025, Cilt: 13 Sayı: 3, 1345 - 1357, 30.09.2025
https://doi.org/10.29109/gujsc.1727452

Öz

Bu çalışmanın amacı, üç boyutlu (3B) yazıcı teknolojisiyle farklı yönlerde dökülen kavelalarla birleştirilmiş, kutu konstrüksiyonlu L-tipi mobilya köşe birleştirmelerinin moment kapasiteleri ve elastikiyetlerinin hem deneysel hem de nümerik olarak araştırılmasıdır. Çalışma kapsamında kullanılacak kavelalar, iki farklı yönde (düşey ve yatay) döküm yapılmak suretiyle üretilmiş ve böylece döküm yönünün birleştirmelerin performansı üzerindeki etkisi incelenmiştir. Kavelaların üretiminde, Akrilonitril Butadiyen Stiren (ABS) ve Akrilonitril Stiren Akrilat (ASA) olmak üzere 2 farklı filament malzemesi tercih edilmiştir. Üretilen kavelalar, L-tipi köşe birleştirmelerde bağlantı elemanı olarak kullanılmıştır. Çalışmada, 2 farklı döküm yönü (yatay ve düşey), 2 farklı kavela sayısı (2 kavelalı, 3 kavelalı) ve her bir örnekten 10 yineleme olmak üzere toplam 80 adet L-tipi köşe birleştirme deney örneği hazırlanmış ve 40’ı statik diyagonal çekme, kalan 40’ı da statik diyagonal basınç yükü altında test edilmiştir. Ayrıca, her bir grup için sonlu elemanlar metodu (FEM) ile nümerik analizler gerçekleştirilmiştir. Deney sonuçlarına göre, ASA malzemeden üretilen kavelalı birleştirmelerin ABS malzemeden üretilen kavelalı birleştirmelere göre; yatay yönde üretilen kavelalı birleştirmelerin de düşey yönde üretilen kavelalı birleştirmelere göre daha yüksek değerler verdiği görülmüştür. Ayrıca birleştirmelerdeki kavela sayısının 2’den 3’e çıkarılmasının birleştirmelerin moment kapasitesini ve elastikiyetini artırdığı görülmüştür. Çalışma sonucunda, Sonlu elemanlar metoduyla gerçekleştirilen nümerik analizler, hem kuvvetler hem de gerilmeler açısından gerçek deney sonuçları ve gözlemlenen deformasyon karakteristikleri ile tutarlı bulunmuştur.

Kaynakça

  • [1] Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 2015;80:369–78. https://doi.org/https://doi.org/10.1016/j.compositesb.2015.06.013.
  • [2] Masood SH, Song WQ. Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater Des 2004;25:587–94. https://doi.org/https://doi.org/10.1016/j.matdes.2004.02.009.
  • [3] Farina I, Fabbrocino F, Carpentieri G, Modano M, Amendola A, Goodall R, et al. On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers. Compos Part B Eng 2016;90:76–85. https://doi.org/https://doi.org/10.1016/j.compositesb.2015.12.006.
  • [4] Kuo C-C, Liu L-C, Teng W-F, Chang H-Y, Chien F-M, Liao S-J, et al. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B Eng 2016;86:36–9. https://doi.org/https://doi.org/10.1016/j.compositesb.2015.10.005.
  • [5] Zou R, Xia Y, Liu S, Hu P, Hou W, Hu Q, et al. Isotropic and anisotropic elasticity and yielding of 3D printed material. Compos Part B Eng 2016;99:506–13. https://doi.org/10.1016/j.compositesb.2016.06.009.
  • [6] Rahim SL, Maidin S. Feasibility Study of Additive Manufacturing Technology Implementation in Malaysian Automotive Industry Using Analytic Hierarchy Process. Adv Mater Res 2014;903:450–4. https://doi.org/10.4028/www.scientific.net/AMR.903.450.
  • [7] Richter C, Lipson H. Untethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect. Artif Life 2011;17:73–86. https://doi.org/10.1162/artl_a_00020.
  • [8] Gebler M, Schoot Uiterkamp AJM, Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy 2014;74:158–67. https://doi.org/https://doi.org/10.1016/j.enpol.2014.08.033.
  • [9] Lee J-Y, Tan WS, An J, Chua CK, Tang CY, Fane AG, et al. The potential to enhance membrane module design with 3D printing technology. J Memb Sci 2016;499:480–90. https://doi.org/https://doi.org/10.1016/j.memsci.2015.11.008.
  • [10] Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003;21:157–61. https://doi.org/https://doi.org/10.1016/S0167-7799(03)00033-7.
  • [11] Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res - Part B Appl Biomater 2005;74:782–8. https://doi.org/10.1002/jbm.b.30291.
  • [12] Kasal A, Smardzewski J, Kuşkun T, Güray E. Analyses of L-Type Corner Joints Connected with Auxetic Dowels for Case Furniture. Materials (Basel) 2023;16. https://doi.org/10.3390/ma16134547.
  • [13] Pizzi A, Despres A, Mansouri HR, Leban J-M, Rigolet S. Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. J Adhes Sci Technol 2006;20:427–36. https://doi.org/10.1163/156856106777144327.
  • [14] Segovia C, Pizzi A. Performance of Dowel-Welded T-Joints for Wood Furniture. J Adhes Sci Technol 2009;23:2073–84. https://doi.org/10.1163/016942409X12526743387926.
  • [15] Stamm B, Natterer J, Navi P. Joining of wood layers by friction welding. J Adhes Sci Technol 2005;19:1129–39. https://doi.org/10.1163/156856105774429046.
  • [16] Zhang J-L, Eckelman CA. The bending moment resistance of single-dowel corner joints in case construction. For Prod J 1993;43:19.
  • [17] Smardzewski J, Prekrat S. Stress Distribution in Disconnected Furniture Joints. Electron J Polish Agric Univ 2002;5:1–7.
  • [18] Gustafsson S-I. Optimising ash wood chairs. Wood Sci Technol 1997;31:291–301. https://doi.org/10.1007/BF00702616.
  • [19] Koç KH, Kizilkaya K, Erdinler ES, Korkut DS. The use of finite element method in the furniture industry. African J Bus Manag 2011;5:855–65. https://doi.org/10.5897/AJBM10.551.
  • [20] Gonabadi H, Chen Y, Yadav A, Bull S. Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques. Int J Adv Manuf Technol 2022;118:1485–510. https://doi.org/10.1007/s00170-021-07940-4.
  • [21] Baharlou E, Ma J. Effect of raster orientation on large-scale robotic 3D printing of short carbon fiber-reinforced PLA composites. Addit Manuf Lett 2025;13. https://doi.org/10.1016/j.addlet.2025.100276.
  • [22] Porima. Porima Polimer Teknolojileri A.Ş. https://porima3d.com/products/porima-abs-filament (accessed June 20, 2025).
  • [23] International A. ASTM D3039 / D3039M - 17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials 2017.https://doi.org/10.1520/D3039_D3039M-17.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap Yapılar ve Konstrüksiyonları
Bölüm Tasarım ve Teknoloji
Yazarlar

Tolga Kuşkun 0000-0001-6657-139X

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 25 Haziran 2025
Kabul Tarihi 21 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Kuşkun, T. (2025). Performance of L-type Furniture Corner Joints Connected with Dowels Produced in Different Orientations with 3D Printing Technology. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(3), 1345-1357. https://doi.org/10.29109/gujsc.1727452

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526