Derleme
BibTex RIS Kaynak Göster

Polimer lifler ve beton özelliklerine etkileri

Yıl 2021, , 438 - 451, 15.04.2021
https://doi.org/10.17714/gumusfenbil.819838

Öz

Beton, günümüz inşaat endüstrisi için vazgeçilmez bir elemandır ve dünya çapında en çok kullanılan yapı malzemesidir. Dayanım ve kolay erişilebilirlik, betonun önemli özellikleridir. Yüksek basınç dayanımının aksine, düşük çekme dayanımı, kırılgan yapısı ve çatlak oluşumu, güvenli binalar inşa etmek için çözülmesi gereken sorunlardır. Günümüzde betonda olası çatlakları önlemek için polimer lif kullanımı birçok araştırmacının odak noktasıdır. Bu derleme makale, polipropilen (PP) polietilen (PE) polietilen tereftalat (PET), poliamid (PA), polivinil alkol (PVA) ve poliakrilonitril (PAN) lif özelliklerinin yanı sıra bu polimer liflerin betonda kullanımını araştıran deneysel çalışmaların kapsamlı bir literatür taramasını sunmaktadır. Bu çalışmadaki amacımız, büzülme ve çatlak oluşumu, basınç, çekme ve eğilme dayanımı, tokluk ve elastisite modülü gibi beton parametrelerini belirlemek için fiber takviyeli beton ile ilgili önceki çalışmaları tüm yönleriyle karşılaştırmaktır. Sonuç olarak, polimer liflerin betonda çatlak oluşumunu azalttığı ve dayanıklılığı, çekme dayanımı gibi mekanik özellikleri ve yarmada çekme dayanımını arttırdığı gösterilmiştir.

Kaynakça

  • ACI Comite 544. (2002). State of the art report on fiber reinforced concrete reported (ACI 544.1R-96 Reapproved 2002). ACI Structural Journal.
  • ACI Committee 305. (2000). ACI 305R-99 Hot weather concreting reported by ACI Committee 305. Journal of American Concrete Institute.
  • Afroughsabet, V. and Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmed, S. F.U. and Maalej, M. (2009). Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites. Construction and Building Materials, 23(1), 96–106. https://doi.org/10.1016/j.conbuildmat.2008.01.009
  • Ahmed, S. F.U. and Mihashi, H. (2007). A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cement and Concrete Composites, 29(5), 365–376. https://doi.org/10.1016/j.cemconcomp.2006.12.014
  • Ahmed, S. F.U. and Mihashi, H. (2011). Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites. Materials and Structures, 44, 1179–1191. https://doi.org/10.1617/s11527-010-9691-8
  • Alhozaimy, A. M., Soroushian, P. and Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cement and Concrete Composites, 18(2), 85–92. https://doi.org/10.1016/0958-9465(95)00003-8
  • Ávila Córdoba, L., Martínez-Barrera, G., Barrera Díaz, C., Ureña Nuñez, F. and Loza Yañez, A. (2013). Effects on mechanical properties of recycled PET in cement-based composites. International Journal of Polymer Science, 2013(1), 1–7. https://doi.org/10.1155/2013/763276
  • Awaja, F. and Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41(7), 1453–1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005
  • Balaguru, P. and Shah, S. P. (1992). Fiber reinforced cement composites. New York: McGraw-Hill, Inc.
  • Banthia, N. and Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010
  • Banthia, N. and Soleimani, S. M. (2005). Flexural response of hybrid fiber-reinforced cementitious composites. ACI Materials Journal. https://doi.org/10.14359/14800
  • Barkoula, N. M., Alcock, B., Cabrera, N. O. and Peijs, T. (2008). Flame retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers and Polymer Composites, 16(2), 101–113. https://doi.org/10.1002/pc
  • Bayasi, Z. and McIntyre, M. (2002). Application of fibrillated polypropylene fibers for restraint of plastic shrinkage cracking in silica fume concrete. ACI Materials Journal. https://doi.org/10.14359/12215
  • Behfarnia, K. and Behravan, A. (2014). Application of high performance polypropylene fibers in concrete lining of water tunnels. Materials and Design, 55, 274–279. https://doi.org/10.1016/j.matdes.2013.09.075
  • Bentur, A. and Mindess, S. (1990). Fiber reinforced cementitious composites. London: Elsevier.
  • Bentur, A. and Mindess, S. (2006). Fibre reinforced cementitious composites. Fibre Reinforced Cementitious Composites. https://doi.org/10.1201/9781482267747
  • Bolat, H., Şimşek, O., Çullu, M., Durmuş, G. and Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191-198. https://doi.org/10.1016/j.compositesb.2014.01.043
  • Busico, V. and Cipullo, R. (2001). Microstructure of polypropylene. Progress in Polymer Science (Oxford) 26(3), 443-533. https://doi.org/10.1016/S0079-6700(00)00046-0
  • Canal, C., Molina, R., Bertran, E. and Erra, P. (2004). Wettability, ageing and recovery process of plasma-treated polyamide 6. Journal of Adhesion Science and Technology, 18(9), 1077-1089. https://doi.org/10.1163/1568561041257487
  • Cato, A. D. and Edie, D. D. (2003). Flow behavior of mesophase pitch. Carbon. https://doi.org/10.1016/S0008-6223(03)00050-2
  • Çavdar, A. (2013). The effects of high temperature on mechanical properties of cementitious composites reinforced with polymeric fibers. Composites Part B: Engineering, 45(1), 78–88. https://doi.org/10.1016/j.compositesb.2012.09.033
  • Çavdar, A. (2014). Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. Composites Part B: Engineering, 58, 463–472. https://doi.org/10.1016/j.compositesb.2013.11.013
  • Chinchillas-Chinchillas, M. J., Orozco-Carmona, V. M., Gaxiola, A., Alvarado-Beltrán, C. G., Pellegrini-Cervantes, M. J., Baldenebro-López, F. J. and Castro-Beltrán, A. (2019). Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers. Construction and Building Materials, 210, 32–39. https://doi.org/10.1016/j.conbuildmat.2019.03.178
  • Choi, J., Zi, G., Hino, S., Yamaguchi, K. and Kim, S. (2014). Influence of fiber reinforcement on strength and toughness of all-lightweight concrete. Construction and Building Materials, 69, 381–389. https://doi.org/10.1016/j.conbuildmat.2014.07.074
  • Choun, Y. S. and Park, J. (2015). Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement. Nuclear Engineering and Technology, 47(6), 756–765. https://doi.org/10.1016/j.net.2015.06.006
  • da Silva Magalhães, M. and Fernandes, M.S.V. (2015). Bending behaviour of recycled PET fiber reinforced cement-based composite. International Journal of Engineering and Technology, 7(4), 282–285. https://doi.org/10.7763/ijet.2015.v7.805
  • Dalton, S., Heatley, F. and Budd, P. M. (1999). Thermal stabilization of polyacrylonitrile fibres. Polymer, 40(20), 5531–5543. https://doi.org/10.1016/S0032-3861(98)00778-2
  • Deng, Z. C., Deng, H. L., Li, J. H. and Liu, G. D. (2006). Flexural fatigue behavior and performance characteristics of polyacrylonitrile fiber reinforced concrete. Key Engineering Materials, 302–303, 572–583. https://doi.org/10.4028/www.scientific.net/kem.302-303.572
  • Deng, Z. and Li, J. (2007). Mechanical behaviors of concrete combined with steel and synthetic macro-fibers. Computers and Concrete. https://doi.org/10.12989/cac.2007.4.3.207
  • Ezeldin, A. S. and Balaguru, P. N. (1989). Bond behavior of normal and high-strength fiber reinforced concrete. ACI Materials Journal.
  • Fallah, S. and Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100
  • Fan, S. J. (2015). Mechanical and durability performance of polyacrylonitrile fiber reinforced concrete. Materials Research, 18(6), 1298–1303. https://doi.org/10.1590/1516-1439.021915
  • Fangueiro, R., Pereira, C. G. and De Araújo, M. (2008). Applications of polyesters and polyamides in civil engineering. Polyesters and Polyamides, 542–592. https://doi.org/10.1533/9781845694609.3.542
  • Felekoǧlu, B., Tosun, K. and Baradan, B. (2009). Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites. Cement and Concrete Research, 39(11), 1023–1032. https://doi.org/10.1016/j.cemconres.2009.07.007
  • Flores-Johnson, E. A. and Li, Q. M. (2012). Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Composite Structures, 94(5), 1555–1563. https://doi.org/10.1016/j.compstruct.2011.12.017
  • Flores-Medina, N., Barluenga, G. and Hernández-Olivares, F. (2014). Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of polypropylene fibers. Composites Part B: Engineering, 61, 214–221. https://doi.org/10.1016/j.compositesb.2014.01.052
  • Foti, D. (2011). Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, 25(4), 1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066
  • Foti, D. (2013). Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures, 96, 396–404. https://doi.org/10.1016/j.compstruct.2012.09.019
  • Fowler, D. W. (1999). Polymers in concrete: A vision for the 21st century. Cement and Concrete Composites, 21, 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3
  • Fraczek-Szczypta, A., Bogun, M. and Blazewicz, S. (2009). Carbon fibers modified with carbon nanotubes. Journal of Materials Science, 44(17), 4721–4727. https://doi.org/10.1007/s10853-009-3730-2
  • Ganesan, N., Indira, P. V. and Sabeena, M. V. (2013). Tension stiffening and cracking of hybrid fiber-reinforced concrete. ACI Materials Journal. https://doi.org/10.14359/51686341
  • Gao, S., Tian, W., Wang, L., Chen, P., Wang, X. and Qiao, J. (2010). Comparison of the mechanics and durability of hybrid fiber reinforced concrete and frost resistant concrete in bridge deck pavement. ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable - Proceedings of the 10th International Conference of Chinese Transportation Professionals. https://doi.org/10.1061/41127(382)311
  • Gencel, O., Ozel, C., Brostow, W. and Martínez-Barrera, G. (2011). Mechanical properties of self-compacting concrete reinforced with polypropylene fibres. Materials Research Innovations, 15(3), 216-225. https://doi.org/10.1179/143307511X13018917925900
  • Granju, J. L. and Balouch, S. U. (2005). Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35, 572-577. https://doi.org/10.1016/j.cemconres.2004.06.032
  • Guler, S. (2018). The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete. Construction and Building Materials, 173, 394–402. https://doi.org/10.1016/j.conbuildmat.2018.03.212
  • Güllü, A., Özdemir, A. and Özdemir, E. (2006). Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics. Materials and Design 27(4), 316-323. https://doi.org/10.1016/j.matdes.2004.10.013
  • Hahne, H., Techen, H. and Worner, J.-D. (1992). Obtaining general qualification approval in Germany for polyacrylonitrile fibre concrete. Proceedings of the International Symposium on Fibre Reinforced Cement and Concrete, 690. E and FN Spon.
  • Horikoshi, T., Ogawa, A., Saito, T. and Hoshiro, H. (2006). Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications.
  • Hsie, M., Tu, C. and Song, P.S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494, 153-157. https://doi.org/10.1016/j.msea.2008.05.037
  • Hughes, D. C. (1984). Stress transfer between fibrillated polyalkene films and cement matrices. Composites. https://doi.org/10.1016/0010-4361(84)90728-6
  • Hughes, D. C. and Hannant, D. J. (1982). Brittle matrices reinforced with polyalkene films of varying elastic moduli. Journal of Materials Science. https://doi.org/10.1007/BF00591485
  • Johnston, C. (2001). Fiber-Reinforced Cements and Concretes. Amsterdam: Gordan and Breach.
  • Kawamata, A., Mihashi, H., Kaneko, Y. and Kirikoshi, K. (2001). Controlling fracture toughness of matrix for ductile fiber reinforced cementitious composites. Engineering Fracture Mechanics, 69(2), 249–265. https://doi.org/10.1016/S0013-7944(01)00088-1
  • Khajuria, A. and Balaguru, K.B. (1991). Long term durability of synthetic fibers in concrete. ACI Symposium Publication, 126. https://doi.org/10.14359/2419
  • Kim, D. J, Naaman, A. E. and El-Tawil, S. (2008). Comparative flexural behavior of four fiber reinforced cementitious composites. Cement and Concrete Composites. https://doi.org/10.1016/j.cemconcomp.2008.08.002
  • Kim, H., Kim, G., Gucunski, N., Nam, J. and Jeon, J. (2015). Assessment of flexural toughness and impact resistance of bundle-type polyamide fiber-reinforced concrete. Composites Part B: Engineering, 78, 431–446. https://doi.org/10.1016/j.compositesb.2015.04.011
  • Kim, H., Kim, G., Lee, S., Son, M., Choe, G. and Nam, J. (2019). Strain rate effects on the compressive and tensile behavior of bundle-type polyamide fiber-reinforced cementitious composites. Composites Part B: Engineering, 160, 50–65. https://doi.org/10.1016/j.compositesb.2018.10.008
  • Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W. and Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. https://doi.org/10.1016/j.compositesb.2007.05.001
  • Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J. and Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232–240. https://doi.org/10.1016/j.cemconcomp.2009.11.002
  • Köksal, F., Altun, F., Yiǧit, I. and Şahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2007.04.017
  • Krauss, P. D., Rogalla, E. A., National Research Council (U.S.). Transportation Research Board., American Association of State Highway and Transportation Officials., United States. Federal Highway Administration. and National Cooperative Highway Research Program. (1996). Transverse cracking in newly constructed bridge decks. In NCHRP Report.
  • Kurtz, S. and Balaguru, P. (2000). Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cement and Concrete Research, 30(2), 183–190. https://doi.org/10.1016/S0008-8846(99)00228-8
  • Li, J., Shanks, R. A. and Long, Y. (2000). Mechanical properties and morphology of polyethylene-polypropylene blends with controlled thermal history. Journal of Applied Polymer Science, 76(7), 1151–1164. https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1151::AID-APP19>3.0.CO;2-H
  • Li, V. C. (2001). Large volume, high-performance applications of fibers in civil engineering. Journal of Applied Polymer Science. https://doi.org/10.1002/app.2263
  • Libre, N. A., Shekarchi, M., Mahoutian, M. and Soroushian, P. (2011). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458-2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058
  • Ludirdja, D. and Young, J. F. (1992). Synthetic Fiber Reinforcement for Concrete. USACERL Technical Report FM- 93/ 02.
  • Maalej, M. and Li, V. C. (1995). Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability. ACI Structural Journal, 92(2), 167–176.
  • Madhavi, T. C., Reddy, M., Kumar, P., Raju, S. and Mathur, D. (2015). Behaviour of polypropylene fiber reinforced concrete. International Journal of Applied Engineering Research, 10(9), 22627–22638.
  • Madhavi, T., Raju, Ls. and Mathur, D. (2014). Polypropylene fiber reinforced concrete-A review. Ijetae.Com. Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O. and Brostow, W. (2011). Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Composites Part A: Applied Science and Manufacturing, 42, 567-572. https://doi.org/10.1016/j.compositesa.2011.01.016
  • Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S. H. and Hosseinpour, I. (2011). The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Construction and Building Materials, 25(1), 351–358. https://doi.org/10.1016/j.conbuildmat.2010.06.018
  • Myers, D., Kang, T. H. and Ramseyer, C. (2008). Early-age properties of polymer fiber reinforced concrete. International Journal of Concrete Structures and Materials, 2(1), 9–14.
  • Naaman, A. E. and Reinhardt, H. W. (2006). Proposed classification of HPFRC composites based on their tensile response. Materials and Structures/Materiaux et Constructions. https://doi.org/10.1617/s11527-006-9103-2
  • Nili, M. and Afroughsabet, V. (2012). Property assessment of steel-fibre reinforced concrete made with silica fume. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2011.10.027
  • Noushini, A., Samali, B. and Vessalas, K. (2013). Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Construction and Building Materials, 49, 374–383. https://doi.org/10.1016/j.conbuildmat.2013.08.035
  • Ochi, T., Okubo, S. and Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. https://doi.org/10.1016/j.cemconcomp.2007.02.002
  • Oh, B. H., Kim, J. C. and Choi, Y. C. (2007). Fracture behavior of concrete members reinforced with structural synthetic fibers. Engineering Fracture Mechanics, 74, 243-257. https://doi.org/10.1016/j.engfracmech.2006.01.032
  • Oh, B. H., Park, D. G., Kim, J. C. and Choi, Y. C. (2005). Experimental and theoretical investigation on the postcracking inelastic behavior of synthetic fiber reinforced concrete beams. Cement and Concrete Research, 35(2), 384-392. https://doi.org/10.1016/j.cemconres.2004.07.019
  • Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263–275. https://doi.org/10.1680/gein.13.00016
  • Orasutthikul, S., Unno, D. and Yokota, H. (2017). Effectiveness of recycled nylon fiber from waste fishing net with respect to fiber reinforced mortar. Construction and Building Materials, 146, 594–602. https://doi.org/10.1016/j.conbuildmat.2017.04.134
  • Pakravan, H. R., Latifi, M. and Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280–294. https://doi.org/10.1016/j.conbuildmat.2017.03.059
  • Pakravan, H. R. and Ozbakkaloglu, T. (2019). Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction and Building Materials, 207, 491–518. https://doi.org/10.1016/j.conbuildmat.2019.02.078
  • Parenteau, T., Ausias, G., Grohens, Y. and Pilvin, P. (2012). Structure, mechanical properties and modelling of polypropylene for different degrees of crystallinity. Polymer, 53(25), 5873–5884. https://doi.org/10.1016/j.polymer.2012.09.053
  • Patel, P. A., Desai, A. K. and Desai, J. A. (2012). Evaluation of engineering properties for polypropylene fibre reinforced concrete. International Journal of Advanced Engineering Technology, 31, 42-45.
  • Pelisser, F., Montedo, O. R. K., Gleize, P. J. P. and Roman, H. R. (2012). Mechanical properties of recycled PET fibers in concrete. Materials Research. https://doi.org/10.1590/S1516-14392012005000088
  • Pelisser, F., Neto, A. B. D. S. S., Rovere, H. L. La and Pinto, R. C. D. A. (2010). Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking. Construction and Building Materials, 24(11), 2171–2176. https://doi.org/10.1016/j.conbuildmat.2010.04.041
  • Pereira De Oliveira, L. A. and Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044
  • Peyvandi, A., Soroushian, P. and Jahangirnejad, S. (2013). Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement. Construction and Building Materials, 45, 36–44. https://doi.org/10.1016/j.conbuildmat.2013.03.084
  • Qian, C. and Stroeven, P. (2000). Fracture properties of concrete reinforced with steel-polypropylene hybrid fibres. Cement and Concrete Composites. https://doi.org/10.1016/S0958-9465(00)00033-0
  • Raivio, P. and Sarvaranta, L. (1994). Microstructure of fibre mortar composites under fire impact-effect of polypropylene and polyacrylonitrile fibres. Cement and Concrete Research. https://doi.org/10.1016/0008-8846(94)90009-4
  • Ramaraj, B. (2007). Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. Journal of Applied Polymer Science, 103(2), 909-916. https://doi.org/10.1002/app.25237
  • Rashiddadash, P., Ramezanianpour, A. A. and Mahdikhani, M. (2014). Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Construction and Building Materials, 51, 313–320. https://doi.org/10.1016/j.conbuildmat.2013.10.087
  • Rong, D., Usui, K., Morohoshi, T., Kato, N., Zhou, M. and Ikeda, T. (2009). Symbiotic degradation of polyvinyl alcohol by Novosphingobium sp . and Xanthobacter flavus. Journal of Environmental Biotechnology, 9(2), 131–134.
  • Rouette, H. K. (2001). Encyclopedia of Textile Finishing. In Encyclopedia of Textile Finishing. https://doi.org/10.1007/978-3-642-85271-8
  • Said, S. H. and Razak, H. A. (2015). The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Materials and Design, 86, 447–457. https://doi.org/10.1016/j.matdes.2015.07.125
  • Said, S. H., Razak, H. A. and Othman, I. (2015). Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers. Construction and Building Materials, 75, 176–188. https://doi.org/10.1016/j.conbuildmat.2014.10.036
  • Sanjuán, M. A., Andrade, C. and Bentur, A. (1996). Effect of polypropylene fibre reinforced mortars on steel reinforcement corrosion induced by carbonation. Materials and Structures/Materiaux et Constructions. https://doi.org/10.1007/bf02480677
  • Santos, A. G., Rincón, J. M., Romero, M. and Talero, R. (2005). Characterization of a polypropylene fibered cement composite using ESEM, FESEM and mechanical testing. Construction and Building Materials, 19 (2005), 396–403. https://doi.org/10.1016/j.conbuildmat.2004.07.023
  • Schwartz, M. (2002). Encyclopedia of Materials, Parts and Finishes. In Encyclopedia of Materials, Parts and Finishes. https://doi.org/10.1201/9781420017168
  • Song, W., Gu, A., Liang, G. and Yuan, L. (2011). Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Applied Surface Science, 257(9), 4069-74. https://doi.org/10.1016/j.apsusc.2010.11.177
  • Spadea, S., Farina, I., Carrafiello, A. and Fraternali, F. (2015). Recycled nylon fibers as cement mortar reinforcement. Construction and Building Materials, 80, 200–209. https://doi.org/10.1016/j.conbuildmat.2015.01.075
  • Tanyildizi, H. and Yonar, Y. (2016). Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature. Construction and Building Materials, 126, 381–387. https://doi.org/10.1016/j.conbuildmat.2016.09.001
  • Thirumurugan, S. and Sivakumar, A. (2013). Compressive strength index of crimped polypropylene fibres in high strength cementitious matrix. World Applied Sciences Journal. https://doi.org/10.5829/idosi.wasj.2013.24.06.714
  • Toutanji, H., McNeil, S. and Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(98)00073-8
  • Tretinnikov, O. N. and Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(Vinyl alcohol) by ftir spectroscopy. Journal of Applied Spectroscopy, 79, 521–526. https://doi.org/10.1007/s10812-012-9634-y
  • Unterweger, C., Brüggemann, O. and Fürst, C. (2014). Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polymer Composites, 35, 227–236. https://doi.org/10.1002/pc.22654
  • Wang, Y., Wu, H. C. and Li, V. C. (2000). Concrete reinforcement with recycled fibers. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(314)
  • Wu, H. C. and Li, V. C. (1999). Fiber/cement interface tailoring with plasma treatment. Cement and Concrete Composites. https://doi.org/10.1016/S0958-9465(98)00053-5
  • Yang, E. H. and Li, V. C. (2010). Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model. Construction and Building Materials, 24(2), 130-139. https://doi.org/10.1016/j.conbuildmat.2007.05.014
  • Yap, S. P., Alengaram, U. J. and Jumaat, M. Z. (2013). Enhancement of mechanical properties in polypropylene- and nylon-fibre reinforced oil palm shell concrete. Materials and Design, 49, 1034–1041. https://doi.org/10.1016/j.matdes.2013.02.070
  • Zhang, C. and Yang, X. (2019). Bilinear elastoplastic constitutive model with polyvinyl alcohol content for strain-hardening cementitious composite. Construction and Building Materials, 209, 388–394. https://doi.org/10.1016/j.conbuildmat.2019.03.113
  • Zhang, P. and Li, Q. (2013). Fracture properties of polypropylene fiber reinforced concrete containing fly ash and silica fume. Research Journal of Applied Sciences, Engineering and Technology, 5(2), 665-670. https://doi.org/10.19026/rjaset.5.5006
  • Zhang, Q., Ranade, R. and Li, V. C. (2014). Feasibility study on fire-resistive engineered cementitious composites. ACI Materials Journal, 111(6), 651–660. https://doi.org/10.14359/51686830
  • Zhong, X., Zhao, X., Qian, Y. and Zou, Y. (2018). Polyethylene plastic production process. Insight - Material Science, 1(1), 1-8. https://doi.org/10.18282/ims.v1i1.104

Polymer fibers and effects on the properties of concrete

Yıl 2021, , 438 - 451, 15.04.2021
https://doi.org/10.17714/gumusfenbil.819838

Öz

Concrete is an indispensable material for today's construction industry and it is the most used building material globally. Strength and easy accessibility are important properties of concrete. Contrary to its high compressive strength, low tensile strength, brittle structure, and crack formation are problems that must be solved in order to build safe buildings. Today, using polymer fibers to prevent possible cracks on the concrete is the focus of many researchers. In the review article was presented a comprehensive literature review of polymer fibers include polypropylene (PP) polyethylene (PE) polyethylene terephthalate (PET), polyamide (PA), polyvinyl alcohol (PVA), and polyacrylonitrile (PAN) fiber properties, as well as the use of these polymer fibers in concrete. Our purposes in this study were to review, all aspects previous studies of fiber reinforced concrete were compared to determine concrete parameters such as shrinkage and crack formation, compression, splitting tensile and flexural strength, toughness, and modulus of elasticity. As a result, it has shown that the polymer fibers decrease the formation of cracks in concrete and increase durability, mechanical properties such as flexural strength and splitting tensile strength.

Kaynakça

  • ACI Comite 544. (2002). State of the art report on fiber reinforced concrete reported (ACI 544.1R-96 Reapproved 2002). ACI Structural Journal.
  • ACI Committee 305. (2000). ACI 305R-99 Hot weather concreting reported by ACI Committee 305. Journal of American Concrete Institute.
  • Afroughsabet, V. and Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmed, S. F.U. and Maalej, M. (2009). Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites. Construction and Building Materials, 23(1), 96–106. https://doi.org/10.1016/j.conbuildmat.2008.01.009
  • Ahmed, S. F.U. and Mihashi, H. (2007). A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cement and Concrete Composites, 29(5), 365–376. https://doi.org/10.1016/j.cemconcomp.2006.12.014
  • Ahmed, S. F.U. and Mihashi, H. (2011). Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites. Materials and Structures, 44, 1179–1191. https://doi.org/10.1617/s11527-010-9691-8
  • Alhozaimy, A. M., Soroushian, P. and Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cement and Concrete Composites, 18(2), 85–92. https://doi.org/10.1016/0958-9465(95)00003-8
  • Ávila Córdoba, L., Martínez-Barrera, G., Barrera Díaz, C., Ureña Nuñez, F. and Loza Yañez, A. (2013). Effects on mechanical properties of recycled PET in cement-based composites. International Journal of Polymer Science, 2013(1), 1–7. https://doi.org/10.1155/2013/763276
  • Awaja, F. and Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41(7), 1453–1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005
  • Balaguru, P. and Shah, S. P. (1992). Fiber reinforced cement composites. New York: McGraw-Hill, Inc.
  • Banthia, N. and Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010
  • Banthia, N. and Soleimani, S. M. (2005). Flexural response of hybrid fiber-reinforced cementitious composites. ACI Materials Journal. https://doi.org/10.14359/14800
  • Barkoula, N. M., Alcock, B., Cabrera, N. O. and Peijs, T. (2008). Flame retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers and Polymer Composites, 16(2), 101–113. https://doi.org/10.1002/pc
  • Bayasi, Z. and McIntyre, M. (2002). Application of fibrillated polypropylene fibers for restraint of plastic shrinkage cracking in silica fume concrete. ACI Materials Journal. https://doi.org/10.14359/12215
  • Behfarnia, K. and Behravan, A. (2014). Application of high performance polypropylene fibers in concrete lining of water tunnels. Materials and Design, 55, 274–279. https://doi.org/10.1016/j.matdes.2013.09.075
  • Bentur, A. and Mindess, S. (1990). Fiber reinforced cementitious composites. London: Elsevier.
  • Bentur, A. and Mindess, S. (2006). Fibre reinforced cementitious composites. Fibre Reinforced Cementitious Composites. https://doi.org/10.1201/9781482267747
  • Bolat, H., Şimşek, O., Çullu, M., Durmuş, G. and Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191-198. https://doi.org/10.1016/j.compositesb.2014.01.043
  • Busico, V. and Cipullo, R. (2001). Microstructure of polypropylene. Progress in Polymer Science (Oxford) 26(3), 443-533. https://doi.org/10.1016/S0079-6700(00)00046-0
  • Canal, C., Molina, R., Bertran, E. and Erra, P. (2004). Wettability, ageing and recovery process of plasma-treated polyamide 6. Journal of Adhesion Science and Technology, 18(9), 1077-1089. https://doi.org/10.1163/1568561041257487
  • Cato, A. D. and Edie, D. D. (2003). Flow behavior of mesophase pitch. Carbon. https://doi.org/10.1016/S0008-6223(03)00050-2
  • Çavdar, A. (2013). The effects of high temperature on mechanical properties of cementitious composites reinforced with polymeric fibers. Composites Part B: Engineering, 45(1), 78–88. https://doi.org/10.1016/j.compositesb.2012.09.033
  • Çavdar, A. (2014). Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. Composites Part B: Engineering, 58, 463–472. https://doi.org/10.1016/j.compositesb.2013.11.013
  • Chinchillas-Chinchillas, M. J., Orozco-Carmona, V. M., Gaxiola, A., Alvarado-Beltrán, C. G., Pellegrini-Cervantes, M. J., Baldenebro-López, F. J. and Castro-Beltrán, A. (2019). Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers. Construction and Building Materials, 210, 32–39. https://doi.org/10.1016/j.conbuildmat.2019.03.178
  • Choi, J., Zi, G., Hino, S., Yamaguchi, K. and Kim, S. (2014). Influence of fiber reinforcement on strength and toughness of all-lightweight concrete. Construction and Building Materials, 69, 381–389. https://doi.org/10.1016/j.conbuildmat.2014.07.074
  • Choun, Y. S. and Park, J. (2015). Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement. Nuclear Engineering and Technology, 47(6), 756–765. https://doi.org/10.1016/j.net.2015.06.006
  • da Silva Magalhães, M. and Fernandes, M.S.V. (2015). Bending behaviour of recycled PET fiber reinforced cement-based composite. International Journal of Engineering and Technology, 7(4), 282–285. https://doi.org/10.7763/ijet.2015.v7.805
  • Dalton, S., Heatley, F. and Budd, P. M. (1999). Thermal stabilization of polyacrylonitrile fibres. Polymer, 40(20), 5531–5543. https://doi.org/10.1016/S0032-3861(98)00778-2
  • Deng, Z. C., Deng, H. L., Li, J. H. and Liu, G. D. (2006). Flexural fatigue behavior and performance characteristics of polyacrylonitrile fiber reinforced concrete. Key Engineering Materials, 302–303, 572–583. https://doi.org/10.4028/www.scientific.net/kem.302-303.572
  • Deng, Z. and Li, J. (2007). Mechanical behaviors of concrete combined with steel and synthetic macro-fibers. Computers and Concrete. https://doi.org/10.12989/cac.2007.4.3.207
  • Ezeldin, A. S. and Balaguru, P. N. (1989). Bond behavior of normal and high-strength fiber reinforced concrete. ACI Materials Journal.
  • Fallah, S. and Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100
  • Fan, S. J. (2015). Mechanical and durability performance of polyacrylonitrile fiber reinforced concrete. Materials Research, 18(6), 1298–1303. https://doi.org/10.1590/1516-1439.021915
  • Fangueiro, R., Pereira, C. G. and De Araújo, M. (2008). Applications of polyesters and polyamides in civil engineering. Polyesters and Polyamides, 542–592. https://doi.org/10.1533/9781845694609.3.542
  • Felekoǧlu, B., Tosun, K. and Baradan, B. (2009). Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites. Cement and Concrete Research, 39(11), 1023–1032. https://doi.org/10.1016/j.cemconres.2009.07.007
  • Flores-Johnson, E. A. and Li, Q. M. (2012). Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Composite Structures, 94(5), 1555–1563. https://doi.org/10.1016/j.compstruct.2011.12.017
  • Flores-Medina, N., Barluenga, G. and Hernández-Olivares, F. (2014). Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of polypropylene fibers. Composites Part B: Engineering, 61, 214–221. https://doi.org/10.1016/j.compositesb.2014.01.052
  • Foti, D. (2011). Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, 25(4), 1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066
  • Foti, D. (2013). Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures, 96, 396–404. https://doi.org/10.1016/j.compstruct.2012.09.019
  • Fowler, D. W. (1999). Polymers in concrete: A vision for the 21st century. Cement and Concrete Composites, 21, 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3
  • Fraczek-Szczypta, A., Bogun, M. and Blazewicz, S. (2009). Carbon fibers modified with carbon nanotubes. Journal of Materials Science, 44(17), 4721–4727. https://doi.org/10.1007/s10853-009-3730-2
  • Ganesan, N., Indira, P. V. and Sabeena, M. V. (2013). Tension stiffening and cracking of hybrid fiber-reinforced concrete. ACI Materials Journal. https://doi.org/10.14359/51686341
  • Gao, S., Tian, W., Wang, L., Chen, P., Wang, X. and Qiao, J. (2010). Comparison of the mechanics and durability of hybrid fiber reinforced concrete and frost resistant concrete in bridge deck pavement. ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable - Proceedings of the 10th International Conference of Chinese Transportation Professionals. https://doi.org/10.1061/41127(382)311
  • Gencel, O., Ozel, C., Brostow, W. and Martínez-Barrera, G. (2011). Mechanical properties of self-compacting concrete reinforced with polypropylene fibres. Materials Research Innovations, 15(3), 216-225. https://doi.org/10.1179/143307511X13018917925900
  • Granju, J. L. and Balouch, S. U. (2005). Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35, 572-577. https://doi.org/10.1016/j.cemconres.2004.06.032
  • Guler, S. (2018). The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete. Construction and Building Materials, 173, 394–402. https://doi.org/10.1016/j.conbuildmat.2018.03.212
  • Güllü, A., Özdemir, A. and Özdemir, E. (2006). Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics. Materials and Design 27(4), 316-323. https://doi.org/10.1016/j.matdes.2004.10.013
  • Hahne, H., Techen, H. and Worner, J.-D. (1992). Obtaining general qualification approval in Germany for polyacrylonitrile fibre concrete. Proceedings of the International Symposium on Fibre Reinforced Cement and Concrete, 690. E and FN Spon.
  • Horikoshi, T., Ogawa, A., Saito, T. and Hoshiro, H. (2006). Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications.
  • Hsie, M., Tu, C. and Song, P.S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494, 153-157. https://doi.org/10.1016/j.msea.2008.05.037
  • Hughes, D. C. (1984). Stress transfer between fibrillated polyalkene films and cement matrices. Composites. https://doi.org/10.1016/0010-4361(84)90728-6
  • Hughes, D. C. and Hannant, D. J. (1982). Brittle matrices reinforced with polyalkene films of varying elastic moduli. Journal of Materials Science. https://doi.org/10.1007/BF00591485
  • Johnston, C. (2001). Fiber-Reinforced Cements and Concretes. Amsterdam: Gordan and Breach.
  • Kawamata, A., Mihashi, H., Kaneko, Y. and Kirikoshi, K. (2001). Controlling fracture toughness of matrix for ductile fiber reinforced cementitious composites. Engineering Fracture Mechanics, 69(2), 249–265. https://doi.org/10.1016/S0013-7944(01)00088-1
  • Khajuria, A. and Balaguru, K.B. (1991). Long term durability of synthetic fibers in concrete. ACI Symposium Publication, 126. https://doi.org/10.14359/2419
  • Kim, D. J, Naaman, A. E. and El-Tawil, S. (2008). Comparative flexural behavior of four fiber reinforced cementitious composites. Cement and Concrete Composites. https://doi.org/10.1016/j.cemconcomp.2008.08.002
  • Kim, H., Kim, G., Gucunski, N., Nam, J. and Jeon, J. (2015). Assessment of flexural toughness and impact resistance of bundle-type polyamide fiber-reinforced concrete. Composites Part B: Engineering, 78, 431–446. https://doi.org/10.1016/j.compositesb.2015.04.011
  • Kim, H., Kim, G., Lee, S., Son, M., Choe, G. and Nam, J. (2019). Strain rate effects on the compressive and tensile behavior of bundle-type polyamide fiber-reinforced cementitious composites. Composites Part B: Engineering, 160, 50–65. https://doi.org/10.1016/j.compositesb.2018.10.008
  • Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W. and Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. https://doi.org/10.1016/j.compositesb.2007.05.001
  • Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J. and Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232–240. https://doi.org/10.1016/j.cemconcomp.2009.11.002
  • Köksal, F., Altun, F., Yiǧit, I. and Şahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2007.04.017
  • Krauss, P. D., Rogalla, E. A., National Research Council (U.S.). Transportation Research Board., American Association of State Highway and Transportation Officials., United States. Federal Highway Administration. and National Cooperative Highway Research Program. (1996). Transverse cracking in newly constructed bridge decks. In NCHRP Report.
  • Kurtz, S. and Balaguru, P. (2000). Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cement and Concrete Research, 30(2), 183–190. https://doi.org/10.1016/S0008-8846(99)00228-8
  • Li, J., Shanks, R. A. and Long, Y. (2000). Mechanical properties and morphology of polyethylene-polypropylene blends with controlled thermal history. Journal of Applied Polymer Science, 76(7), 1151–1164. https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1151::AID-APP19>3.0.CO;2-H
  • Li, V. C. (2001). Large volume, high-performance applications of fibers in civil engineering. Journal of Applied Polymer Science. https://doi.org/10.1002/app.2263
  • Libre, N. A., Shekarchi, M., Mahoutian, M. and Soroushian, P. (2011). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458-2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058
  • Ludirdja, D. and Young, J. F. (1992). Synthetic Fiber Reinforcement for Concrete. USACERL Technical Report FM- 93/ 02.
  • Maalej, M. and Li, V. C. (1995). Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability. ACI Structural Journal, 92(2), 167–176.
  • Madhavi, T. C., Reddy, M., Kumar, P., Raju, S. and Mathur, D. (2015). Behaviour of polypropylene fiber reinforced concrete. International Journal of Applied Engineering Research, 10(9), 22627–22638.
  • Madhavi, T., Raju, Ls. and Mathur, D. (2014). Polypropylene fiber reinforced concrete-A review. Ijetae.Com. Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O. and Brostow, W. (2011). Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Composites Part A: Applied Science and Manufacturing, 42, 567-572. https://doi.org/10.1016/j.compositesa.2011.01.016
  • Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S. H. and Hosseinpour, I. (2011). The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Construction and Building Materials, 25(1), 351–358. https://doi.org/10.1016/j.conbuildmat.2010.06.018
  • Myers, D., Kang, T. H. and Ramseyer, C. (2008). Early-age properties of polymer fiber reinforced concrete. International Journal of Concrete Structures and Materials, 2(1), 9–14.
  • Naaman, A. E. and Reinhardt, H. W. (2006). Proposed classification of HPFRC composites based on their tensile response. Materials and Structures/Materiaux et Constructions. https://doi.org/10.1617/s11527-006-9103-2
  • Nili, M. and Afroughsabet, V. (2012). Property assessment of steel-fibre reinforced concrete made with silica fume. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2011.10.027
  • Noushini, A., Samali, B. and Vessalas, K. (2013). Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Construction and Building Materials, 49, 374–383. https://doi.org/10.1016/j.conbuildmat.2013.08.035
  • Ochi, T., Okubo, S. and Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. https://doi.org/10.1016/j.cemconcomp.2007.02.002
  • Oh, B. H., Kim, J. C. and Choi, Y. C. (2007). Fracture behavior of concrete members reinforced with structural synthetic fibers. Engineering Fracture Mechanics, 74, 243-257. https://doi.org/10.1016/j.engfracmech.2006.01.032
  • Oh, B. H., Park, D. G., Kim, J. C. and Choi, Y. C. (2005). Experimental and theoretical investigation on the postcracking inelastic behavior of synthetic fiber reinforced concrete beams. Cement and Concrete Research, 35(2), 384-392. https://doi.org/10.1016/j.cemconres.2004.07.019
  • Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263–275. https://doi.org/10.1680/gein.13.00016
  • Orasutthikul, S., Unno, D. and Yokota, H. (2017). Effectiveness of recycled nylon fiber from waste fishing net with respect to fiber reinforced mortar. Construction and Building Materials, 146, 594–602. https://doi.org/10.1016/j.conbuildmat.2017.04.134
  • Pakravan, H. R., Latifi, M. and Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280–294. https://doi.org/10.1016/j.conbuildmat.2017.03.059
  • Pakravan, H. R. and Ozbakkaloglu, T. (2019). Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction and Building Materials, 207, 491–518. https://doi.org/10.1016/j.conbuildmat.2019.02.078
  • Parenteau, T., Ausias, G., Grohens, Y. and Pilvin, P. (2012). Structure, mechanical properties and modelling of polypropylene for different degrees of crystallinity. Polymer, 53(25), 5873–5884. https://doi.org/10.1016/j.polymer.2012.09.053
  • Patel, P. A., Desai, A. K. and Desai, J. A. (2012). Evaluation of engineering properties for polypropylene fibre reinforced concrete. International Journal of Advanced Engineering Technology, 31, 42-45.
  • Pelisser, F., Montedo, O. R. K., Gleize, P. J. P. and Roman, H. R. (2012). Mechanical properties of recycled PET fibers in concrete. Materials Research. https://doi.org/10.1590/S1516-14392012005000088
  • Pelisser, F., Neto, A. B. D. S. S., Rovere, H. L. La and Pinto, R. C. D. A. (2010). Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking. Construction and Building Materials, 24(11), 2171–2176. https://doi.org/10.1016/j.conbuildmat.2010.04.041
  • Pereira De Oliveira, L. A. and Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044
  • Peyvandi, A., Soroushian, P. and Jahangirnejad, S. (2013). Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement. Construction and Building Materials, 45, 36–44. https://doi.org/10.1016/j.conbuildmat.2013.03.084
  • Qian, C. and Stroeven, P. (2000). Fracture properties of concrete reinforced with steel-polypropylene hybrid fibres. Cement and Concrete Composites. https://doi.org/10.1016/S0958-9465(00)00033-0
  • Raivio, P. and Sarvaranta, L. (1994). Microstructure of fibre mortar composites under fire impact-effect of polypropylene and polyacrylonitrile fibres. Cement and Concrete Research. https://doi.org/10.1016/0008-8846(94)90009-4
  • Ramaraj, B. (2007). Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. Journal of Applied Polymer Science, 103(2), 909-916. https://doi.org/10.1002/app.25237
  • Rashiddadash, P., Ramezanianpour, A. A. and Mahdikhani, M. (2014). Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Construction and Building Materials, 51, 313–320. https://doi.org/10.1016/j.conbuildmat.2013.10.087
  • Rong, D., Usui, K., Morohoshi, T., Kato, N., Zhou, M. and Ikeda, T. (2009). Symbiotic degradation of polyvinyl alcohol by Novosphingobium sp . and Xanthobacter flavus. Journal of Environmental Biotechnology, 9(2), 131–134.
  • Rouette, H. K. (2001). Encyclopedia of Textile Finishing. In Encyclopedia of Textile Finishing. https://doi.org/10.1007/978-3-642-85271-8
  • Said, S. H. and Razak, H. A. (2015). The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Materials and Design, 86, 447–457. https://doi.org/10.1016/j.matdes.2015.07.125
  • Said, S. H., Razak, H. A. and Othman, I. (2015). Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers. Construction and Building Materials, 75, 176–188. https://doi.org/10.1016/j.conbuildmat.2014.10.036
  • Sanjuán, M. A., Andrade, C. and Bentur, A. (1996). Effect of polypropylene fibre reinforced mortars on steel reinforcement corrosion induced by carbonation. Materials and Structures/Materiaux et Constructions. https://doi.org/10.1007/bf02480677
  • Santos, A. G., Rincón, J. M., Romero, M. and Talero, R. (2005). Characterization of a polypropylene fibered cement composite using ESEM, FESEM and mechanical testing. Construction and Building Materials, 19 (2005), 396–403. https://doi.org/10.1016/j.conbuildmat.2004.07.023
  • Schwartz, M. (2002). Encyclopedia of Materials, Parts and Finishes. In Encyclopedia of Materials, Parts and Finishes. https://doi.org/10.1201/9781420017168
  • Song, W., Gu, A., Liang, G. and Yuan, L. (2011). Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Applied Surface Science, 257(9), 4069-74. https://doi.org/10.1016/j.apsusc.2010.11.177
  • Spadea, S., Farina, I., Carrafiello, A. and Fraternali, F. (2015). Recycled nylon fibers as cement mortar reinforcement. Construction and Building Materials, 80, 200–209. https://doi.org/10.1016/j.conbuildmat.2015.01.075
  • Tanyildizi, H. and Yonar, Y. (2016). Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature. Construction and Building Materials, 126, 381–387. https://doi.org/10.1016/j.conbuildmat.2016.09.001
  • Thirumurugan, S. and Sivakumar, A. (2013). Compressive strength index of crimped polypropylene fibres in high strength cementitious matrix. World Applied Sciences Journal. https://doi.org/10.5829/idosi.wasj.2013.24.06.714
  • Toutanji, H., McNeil, S. and Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(98)00073-8
  • Tretinnikov, O. N. and Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(Vinyl alcohol) by ftir spectroscopy. Journal of Applied Spectroscopy, 79, 521–526. https://doi.org/10.1007/s10812-012-9634-y
  • Unterweger, C., Brüggemann, O. and Fürst, C. (2014). Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polymer Composites, 35, 227–236. https://doi.org/10.1002/pc.22654
  • Wang, Y., Wu, H. C. and Li, V. C. (2000). Concrete reinforcement with recycled fibers. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(314)
  • Wu, H. C. and Li, V. C. (1999). Fiber/cement interface tailoring with plasma treatment. Cement and Concrete Composites. https://doi.org/10.1016/S0958-9465(98)00053-5
  • Yang, E. H. and Li, V. C. (2010). Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model. Construction and Building Materials, 24(2), 130-139. https://doi.org/10.1016/j.conbuildmat.2007.05.014
  • Yap, S. P., Alengaram, U. J. and Jumaat, M. Z. (2013). Enhancement of mechanical properties in polypropylene- and nylon-fibre reinforced oil palm shell concrete. Materials and Design, 49, 1034–1041. https://doi.org/10.1016/j.matdes.2013.02.070
  • Zhang, C. and Yang, X. (2019). Bilinear elastoplastic constitutive model with polyvinyl alcohol content for strain-hardening cementitious composite. Construction and Building Materials, 209, 388–394. https://doi.org/10.1016/j.conbuildmat.2019.03.113
  • Zhang, P. and Li, Q. (2013). Fracture properties of polypropylene fiber reinforced concrete containing fly ash and silica fume. Research Journal of Applied Sciences, Engineering and Technology, 5(2), 665-670. https://doi.org/10.19026/rjaset.5.5006
  • Zhang, Q., Ranade, R. and Li, V. C. (2014). Feasibility study on fire-resistive engineered cementitious composites. ACI Materials Journal, 111(6), 651–660. https://doi.org/10.14359/51686830
  • Zhong, X., Zhao, X., Qian, Y. and Zou, Y. (2018). Polyethylene plastic production process. Insight - Material Science, 1(1), 1-8. https://doi.org/10.18282/ims.v1i1.104
Toplam 114 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derlemeler
Yazarlar

Cüneyt Doğan 0000-0002-6662-8381

İsmail Demir 0000-0001-8493-0309

Yayımlanma Tarihi 15 Nisan 2021
Gönderilme Tarihi 2 Kasım 2020
Kabul Tarihi 1 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Doğan, C., & Demir, İ. (2021). Polymer fibers and effects on the properties of concrete. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 438-451. https://doi.org/10.17714/gumusfenbil.819838