Derleme
BibTex RIS Kaynak Göster

The use of reactive ethylene terpolymers in the modification of bitumen: A literature review

Yıl 2021, , 845 - 862, 15.07.2021
https://doi.org/10.17714/gumusfenbil.894286

Öz

For many years, bitumen has been modified by adding different additives in order to increase its performance. Reactive ethylene terpolymers (RET) used in bitumen modification and assumed to react with bitumen are relatively more up-to-date compared to other additives. The most important features of these additives are that they are not exposed to phase separation occurring in other additives and they are added to bitumen in much smaller amounts (1-2%) compared to other additives. In this review, the studies using RET modified bitumen were examined and the effect of RET modification on bitumen was tried to be understood. Accordingly, first of all, general information about RETs and mixing conditions were mentioned and then the effect of RET modification on physical and rheological properties of bitumen was examined. In addition, studies on asphalt mixtures prepared with RET modified bitumens and studies involving RET in composite modification were also examined. As a result of this review study, it was understood that the RET modification increased the hardness and performance of pure bitumen at high temperatures. However, it has been noticed that the mixing conditions used in the preparation of RET modified bitumen differ significantly. In addition, it has been observed that it is possible to obtain a bitumen that is more flexible at low temperatures and more rigid at high temperatures compared to pure bitumen, with the use of different additives together with RET in composite modification.

Kaynakça

  • Airey, G. D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16(8), 473-487. https://doi.org/10.1016/S0950-0618(02)00103-4.
  • Al-Hadidy, A. I. and Tan, Y. Q. (2009). Mechanistic analysis of ST and SBS-modified flexible pavements. Construction and Building Materials, 23(8), 2941-2950. https://doi.org/10.1016/j.conbuildmat.2009.02.023.
  • Alam, G., Hafeez, I., Yaseen, G., Nasir, M. A., Hussain, A. and Ahmad, N. (2020). Assessing the aging tendency of asphalt binder using a thermal cycler. International Journal of Pavement Engineering, 1-12. https://doi.org/10.1080/10298436.2020.1861279.
  • Ali, A., ur Rehman, Z., Farooq, U. and Mirza, M. W. (2018). Evaluation of rutting potential of polymer modified asphalt binder using multiple stress creep and recovery method. Pakistan Journal of Engineering and Applied Sciences, 22(1), 64–71.
  • Almusawi, A., Sengoz, B. and Topal, A. (2021a). Evaluation of mechanical properties of different asphalt concrete types in relation with mixing and compaction temperatures. Construction and Building Materials, 268, 121140. https://doi.org/10.1016/j.conbuildmat.2020.121140.
  • Almusawi, A., Sengoz, B. and Topal, A. (2021b). Investigation of mixing and compaction temperatures of modified hot asphalt and warm mix asphalt. Periodica Polytechnica Civil Engineering, 65(1), 72-83. https://doi.org/10.3311/PPci.15118.
  • Almusawi, A., Sengoz, B., Topal, A. and Oner, J. (2019). Comparison between zero shear viscosity and steady shear flow methods to determine mixing and compaction temperatures of PMB. Eurasian Journal of Civil Engineering and Architecture, 3(2), 1-8.
  • Athira, P. K., Atul Narayan, S. P., Murali Krishnan, J. and Jain, P. K. (2020). Comparison of binder and mixture tests to characterize permanent deformation of elastomer and terpolymer modified binders. Construction and Building Materials, 264, 120138. https://doi.org/10.1016/j.conbuildmat.2020.120138.
  • Bagdat, T., Galiya, I. and Yerik, A. (2015). Rheological properties of oxidized bitumen with polymer additive. Journal of Applied Sciences, 15(1), 129-137.
  • Bhurke, A. S., Shin, E. E. and Drzal, L. T. (1997). Fracture morphology and fracture toughness measurement of polymer-modified asphalt concrete. Asphalt Mixture Quality, Characteristics, and Performance(1590), 23-33.
  • Bricker, R. M. and Hesp, S. A. M. (2013). Modulated differential scanning calorimetry study of physical hardening rates in asphalt cements. 2013 Airfield & Highway Pavement Conference (pp. 955-966). Los Angeles, California, United States. https://doi.org/10.1061/9780784413005.079.
  • Brule, B., Brion, Y. and Tanguy, A. (1988). Paving asphalt polymer blends: Relationships between composition, structure and properties (with discussion). Association of Asphalt Paving Technologists Proc (pp. 41-64).
  • Bulatovic, V. O., Rek, V. and Markovic, J. (2014a). Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate. Polymer Engineering and Science, 54(5), 1056-1065. https://doi.org/10.1002/pen.23649.
  • Bulatovic, V. O., Rek, V. and Markovic, K. J. (2012). Permanent deformation of polymer modified bitumen. Road and Rail Infrastructure Ii, 317-326.
  • Bulatovic, V. O., Rek, V. and Markovic, K. J. (2013). Influence of polymer types on bitumen engineering properties. Materials Research Innovations, 17(3), 189-194. https://doi.org/10.1179/1433075x12y.0000000059.
  • Bulatovic, V. O., Rek, V. and Markovic, K. J. (2014b). Effect of polymer modifiers on the properties of bitumen. Journal of Elastomers and Plastics, 46(5), 448-469. https://doi.org/10.1177/0095244312469964.
  • Chiono, V., Filippi, S., Yordanov, H., Minkova, L. and Magagnini, P. (2003). Reactive compatibilizer precursors for LDPE/PA6 blends. III: ethylene–glycidylmethacrylate copolymer. Polymer, 44(8), 2423-2432. https://doi.org/10.1016/S0032-3861(03)00134-4.
  • Collins, J., Bouldin, M., Gelles, R. and Berker, A. (1991). Improved performance of paving asphalts by polymer modification (with discussion). Journal of the Association of Asphalt Paving Technologists, 60, 43-79.
  • Connan, J., Jones, M. K., Briggs, D. E. G., Eglington, G. and Hagelberg, E. (1999). Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1379), 33-50. https://doi.org/10.1098/rstb.1999.0358.
  • de Sá Araujo, M. d. F. A., Lins, V. d. F. C., Pasa, V. M. D. and Leite, L. F. M. (2013). Weathering aging of modified asphalt binders. Fuel Processing Technology, 115, 19-25. https://doi.org/10.1016/j.fuproc.2013.03.029.
  • Domingos, M. D. I., Faxina, A. and Bernucci, L. L. B. (2020). Rutting on asphalt binders and mixtures modified with PPA and Elvaloy®: laboratory aspects and rheological modeling. 34º Congresso de Pesquisa e Ensino em Transporte da ANPET (pp. 1275-1286).
  • Domingos, M. D. I. and Faxina, A. L. (2015a). Accelerated short-term ageing effects on the rheological properties of modified bitumens with similar high PG grades. Road Materials and Pavement Design, 16(2), 469-480. https://doi.org/10.1080/14680629.2014.995209.
  • Domingos, M. D. I. and Faxina, A. L. (2015b). Rheological analysis of asphalt binders modified with Elvaloy® terpolymer and polyphosphoric acid on the multiple stress creep and recovery test. Materials and Structures, 48(5), 1405-1416. https://doi.org/10.1617/s11527-013-0242-y.
  • Domingos, M. D. I., Faxina, A. L. and Bernucci, L. L. B. (2017). Characterization of the rutting potential of modified asphalt binders and its correlation with the mixture's rut resistance. Construction and Building Materials, 144, 207-213. https://doi.org/10.1016/j.conbuildmat.2017.03.171.
  • Dow. Dow chemicals brand index Elvaloy. (2021, February 02). Retrieved from https://www.dow.com/en-us/brand/elvaloy.html.
  • Dow. ELVALOY™ RET vs. SBS Modified Asphalt. (2021, February 02). Retrieved from https://www.dow.com/en-us/market/mkt-building-construction/sub-build-construction-chem/app-build-constchem-asphalt-modification/ret-vs-sbs-modified-asphalt.html.
  • Gama, D. A., Yan, Y., Rodrigues, J. K. G. and Roque, R. (2018). Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance. Construction and Building Materials, 169, 522-529. https://doi.org/10.1016/j.conbuildmat.2018.02.206.
  • Geckil, T. (2019). Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen. Materials, 12(6). https://doi.org/10.3390/ma12060921.
  • Geckil, T. and Seloglu, M. (2018). Performance properties of asphalt modified with reactive terpolymer. Construction and Building Materials, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036.
  • Hafeez, I. and Kamal, M. A. (2009). A rheological comparison of hard grade binders with polymer modified bitumen under aged and unaged conditions. Materials Characterisation Iv: Computational Methods and Experiments, 64, 105-114. https://doi.org/10.2495/Mc090101.
  • Hampl, R., Vacin, O., Jasso, M., Stastna, J. and Zanzotto, L. (2015). Modeling of tensile creep and recovery of polymer modified asphalt binders at low temperatures. Applied Rheology, 25(3). https://doi.org/10.3933/Applrheol-25-34675.
  • Hesp, S. A. M., Hoare, T. R. and Roy, S. D. (2002). Low-temperature Fracture in Reactive-ethylene-terpolymer-modified Asphalt Binders. International Journal of Pavement Engineering, 3(3), 153-159. https://doi.org/10.1080/1029843021000067809.
  • Irfan, M., Saeed, M., Ahmed, S. and Ali, Y. (2017). Performance Evaluation of Elvaloy as a Fuel-Resistant Polymer in Asphaltic Concrete Airfield Pavements. Journal of Materials in Civil Engineering, 29(10). https://doi.org/10.1061/(Asce)Mt.1943-5533.0002018.
  • Isacsson, U. and Lu, X. (1995). Testing and appraisal of polymer-modified road bitumens - state-of-the-art. Materials and Structures, 28(177), 139-159. https://doi.org/10.1007/Bf02473221.
  • Jasso, M., Hampl, R., Vacin, O., Bakos, D., Stastna, J. and Zanzotto, L. (2015). Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid. Fuel Processing Technology, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002.
  • Javid, M. A. (2016). Effect of polymer modification on rheological properties of asphalt. Journal of Civil Engineering Research, 6(3), 55-60.
  • Keyf, S. (2010). Investigation of penetration and penetration index in bitumen modified with SBS and reactive terpolymer. Sigma, 28, 26-34.
  • Keyf, S. (2015). The modification of bitumen with reactive ethylene terpolymer, styrene butadiene styrene and variable amounts of ethylene vinyl acetate. Research on Chemical Intermediates, 41(3), 1485-1497. https://doi.org/10.1007/s11164-013-1287-9.
  • Keyf, S. (2018). The modification of bitumen with styrene-butadiene-styrene, ethylene vinyl acetate and varying the amount of reactive ethylene terpolymer. Journal of Elastomers and Plastics, 50(3), 241-255. https://doi.org/10.1177/0095244317708590.
  • Keyf, S., Ismail, O. and Corbacioglu, B. D. (2007a). The modification of bitumen with synthetic reactive ethylene terpolymer and ethylene terpolymer. Petroleum Science and Technology, 25(5-6), 561-568. https://doi.org/10.1080/10916460500294259.
  • Keyf, S., Ismail, O. and Corbacioglu, B. D. (2007b). Polymer-modified bitumen using ethylene terpolymers. Petroleum Science and Technology, 25(7), 915-923. https://doi.org/10.1080/10916460500411812.
  • Li, X. J., Clyne, T., Reinke, G., Johnson, E. N., Gibson, N. and Kutay, M. E. (2011). Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid. Transportation Research Record, 2210, 47-56. https://doi.org/10.3141/2210-06.
  • Liu, L. Q., Xiao, F. P., Zhang, H. L. and Amirkhanian, S. (2017). Rheological characteristics of alternative modified binders. Construction and Building Materials, 144, 442-450. https://doi.org/10.1016/j.conbuildmat.2017.03.193.
  • Lotader. Bitumen reactive modification with Lotader® AX range. (2021, February 02). Retrieved from https://www.lotader.com/en/application/bitumen-modification/.
  • Love, C. T., Xian, G. and Karbhari, V. M. (2007). Cathodic disbondment resistance with reactive ethylene terpolymer blends. Progress in Organic Coatings, 60(4), 287-296. https://doi.org/10.1016/j.porgcoat.2007.07.022.
  • Loyens, W. and Groeninckx, G. (2002). Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature. Polymer, 43(21), 5679-5691. https://doi.org/10.1016/S0032-3861(02)00472-X.
  • Michon, L. C., Williams, T. M. and Miknis, F. P. (1998). Use of the environmental scanning electron microscope to investigate three polymer modified asphalts. Petroleum Science and Technology, 16(7-8), 797-809. https://doi.org/10.1080/10916469808949812.
  • Miknis, F. P. and Thomas, K. P. (2008). NMR analysis of polyphosphoric acid-modified bitumens. Road Materials and Pavement Design, 9(1), 59-72. https://doi.org/10.3166/Rmpd.9.59-72.
  • Minkova, L., Yordanov, H. and Filippi, S. (2002). Characterization of blends of LDPE and PA6 with functionalized polyethylenes. Polymer, 43(23), 6195-6204. https://doi.org/10.1016/S0032-3861(02)00532-3.
  • Oruc, S. and Yilmaz, B. (2016). Improvement in performance properties of asphalt using a novel boron-containing additive. Construction and Building Materials, 123, 207-213. https://doi.org/10.1016/j.conbuildmat.2016.07.003.
  • Oruc, S., Yilmaz, B. and Sancak, K. (2016). Effect of boron-containing additives on rheological properties of asphalt binder. Road Materials and Pavement Design, 17(4), 810-824. https://doi.org/10.1080/14680629.2015.1120228.
  • Pazzagli, F. and Pracella, M. (2000). Reactive compatibilization of polyolefin/PET blends by melt grafting with glycidyl methacrylate. Macromolecular Symposia, 149(1), 225-230. https://doi.org/10.1002/1521-3900(200001)149:1<225::AID-MASY225>3.0.CO;2-8.
  • Pérez-Lepe, A., Martínez-Boza, F. J. and Gallegos, C. (2007). High temperature stability of different polymer-modified bitumens: A rheological evaluation. Journal of Applied Polymer Science, 103(2), 1166-1174. https://doi.org/10.1002/app.25336.
  • Perez-Lepe, A., Martinez-Boza, F. J., Gallegos, C., Gonzalez, O., Munoz, M. E. and Santamaria, A. (2003). Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen. Fuel, 82(11), 1339-1348. https://doi.org/10.1016/S0016-2361(03)00065-6.
  • Polacco, G., Stastna, J., Biondi, D., Antonelli, F., Vlachovicova, Z. and Zanzotto, L. (2004a). Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. Journal of Colloid and Interface Science, 280(2), 366-373. https://doi.org/10.1016/j.jcis.2004.08.043.
  • Polacco, G., Stastna, J., Vlachovicova, Z., Biondi, D. and Zanzotto, L. (2004b). Temporary networks in polymer-modified asphalts. Polymer Engineering and Science, 44(12), 2185-2193. https://doi.org/10.1002/pen.20246.
  • Selvavathi, V., Sekar, V. A., Sriram, V. and Sairam, B. (2002). Modifications of bitumen by elastomer and reactive polymer - A comparative study. Petroleum Science and Technology, 20(5-6), 535-547. https://doi.org/10.1081/Lft-120003577.
  • Sengoz, B. and Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897-1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013.
  • Sengoz, B. and Topal, A. (2005). Use of asphalt roofing shingle waste in HMA. Construction and Building Materials, 19(5), 337-346. https://doi.org/10.1016/j.conbuildmat.2004.08.005.
  • Singh, D., Ashish, P. K., Chander, S., Habal, A. and Kataware, A. (2019a). Effect of warm-mix additives and lime on intermediate-temperature fracture property of RET- and PPA-modified asphalt binder. Journal of Materials in Civil Engineering, 31(7), 04019112. https://doi.org/10.1061/(Asce)Mt.1943-5533.0002756.
  • Singh, D., Ashish, P. K., Kataware, A. and Habal, A. (2017). Evaluating performance of PPA-and-Elvaloy-modified binder containing WMA additives and lime using MSCR and LAS tests. Journal of Materials in Civil Engineering, 29(8). https://doi.org/10.1061/(Asce)Mt.1943-5533.0001934.
  • Singh, D., Ashish, P. K., Kataware, A. and Habal, A. (2019b). Effects of WMA additives and hydrated lime on high-stress and high-temperature performance of Elvaloy® - and PPA-modified asphalt binder. Road Materials and Pavement Design, 20(6), 1354-1375. https://doi.org/10.1080/14680629.2018.1446040.
  • Singh, D., Habal, A., Ashish, P. K. and Kataware, A. (2018). Evaluating suitability of energy efficient and anti-stripping additives for polymer and Polyphosphoric acid modified asphalt binder using surface free energy approach. Construction and Building Materials, 158, 949-960. https://doi.org/10.1016/j.conbuildmat.2017.10.079.
  • Skronka, G., Jasso, M. and Vacin, O. 2019. Determination of rutting distresses on hot mix asphalts by advanced techniques MATEC Web of Conferences, EDP Sciences.
  • Suo, Z. and Wong, W. G. (2009). Nonlinear properties analysis on rutting behaviour of bituminous materials with different air void contents. Construction and Building Materials, 23(12), 3492-3498. https://doi.org/10.1016/j.conbuildmat.2009.07.004.
  • Tayfur, S., Ozen, H. and Aksoy, A. (2007). Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, 21(2), 328-337. https://doi.org/10.1016/j.conbuildmat.2005.08.014.
  • Topal, A. (2010). Evaluation of the properties and microstructure of plastomeric polymer modified bitumens. Fuel Processing Technology, 91(1), 45-51. https://doi.org/10.1016/j.fuproc.2009.08.007.
  • Vachhani, K. K. and Mishra, C. (2014). Influence of VG30 grade bitumen with and without reactive ethylene terpolymer (Elvaloy® 4170) in short term aging. International Journal of Current Engineering and Technology, 4(6), 4206-4209.
  • Xu, C., Zhang, Z. Q. and Liu, F. F. (2020). Improving the low-temperature performance of RET modified asphalt mixture with different modifiers. Coatings, 10(11), 1070. https://doi.org/10.3390/coatings10111070.
  • Xu, C., Zhang, Z. Q., Zhao, F. Q., Liu, F. F. and Wang, J. R. (2019). Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP). Construction and Building Materials, 206, 560-575. https://doi.org/10.1016/j.conbuildmat.2019.02.101.
  • Yıldırım, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials, 21(1), 66-72. https://doi.org/10.1016/j.conbuildmat.2005.07.007.
  • Yilmaz, M., Kok, B. V. and Kuloglu, N. (2011). Effects of using asphaltite as filler on mechanical properties of hot mix asphalt. Construction and Building Materials, 25(11), 4279-4286. https://doi.org/10.1016/j.conbuildmat.2011.04.072.
  • Zahoor, M., Nizamuddin, S., Madapusi, S. and Giustozzi, F. (2021). Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123304.
  • Zhu, J. Q., Birgisson, B. and Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005

Reaktif etilen terpolimerlerin bitümün modifikasyonunda kullanımı: Bir literatür araştırması

Yıl 2021, , 845 - 862, 15.07.2021
https://doi.org/10.17714/gumusfenbil.894286

Öz

Uzun yıllardan beri, bitümün performansının arttırılması amacıyla bitüme farklı katkı maddeleri ilave edilerek modifiye edilmektedir. Bitüm modifikasyonunda kullanılan ve bitüm ile tepkimeye girdiği varsayılan reaktif etilen terpolimerler (RET) diğer katkı malzemelerine kıyasla nispeten daha günceldir. Bu katkı malzemelerinin en önemli özellikleri diğer katkı malzemelerinde meydana gelen faz ayrışımına maruz kalmaması ve diğer katkı maddelerine kıyasla çok daha az miktarlarda (%1-2) bitüme ilave edilmesidir. Bu derleme çalışmasında, RET modifiye bitüm kullanılan çalışmalar incelenmiş ve RET modifikasyonun bitüm üzerindeki etkisi anlaşılmaya çalışılmıştır. Bu doğrultuda, öncelikle RET’ler ile ilgili genel bilgilere ve karıştırma koşullarına değinilmiş ardından RET modifikasyonunun bitümün fiziksel ve reolojik özelliklerine etkisi incelenmiştir. Bunlara ilaveten, RET modifiyeli bitümler ile hazırlanan asfalt karışımlar üzerine yapılan çalışmalar ve kompozit modifikasyon içerisinde RET’e yer verilen çalışmalar da incelenmiştir. Yapılan araştırma sonucunda, RET modifikasyonunun saf bitümün sertliğini ve yüksek sıcaklıklardaki performansını arttırdığı anlaşılmıştır. Bununla birlikte, RET modifiyeli bitümlerin hazırlanmasında kullanılan karıştırma koşullarının önemli farklılıklar gösterdiği fark edilmiştir. Ayrıca, kompozit modifikasyonda RET ile birlikte farklı katkı maddelerinin kullanımı ile saf bitüme kıyasla düşük sıcaklıklarda daha esnek, yüksek sıcaklıklarda ise daha rijit bir bitümün elde edilmesinin mümkün olduğu görülmüştür.

Kaynakça

  • Airey, G. D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16(8), 473-487. https://doi.org/10.1016/S0950-0618(02)00103-4.
  • Al-Hadidy, A. I. and Tan, Y. Q. (2009). Mechanistic analysis of ST and SBS-modified flexible pavements. Construction and Building Materials, 23(8), 2941-2950. https://doi.org/10.1016/j.conbuildmat.2009.02.023.
  • Alam, G., Hafeez, I., Yaseen, G., Nasir, M. A., Hussain, A. and Ahmad, N. (2020). Assessing the aging tendency of asphalt binder using a thermal cycler. International Journal of Pavement Engineering, 1-12. https://doi.org/10.1080/10298436.2020.1861279.
  • Ali, A., ur Rehman, Z., Farooq, U. and Mirza, M. W. (2018). Evaluation of rutting potential of polymer modified asphalt binder using multiple stress creep and recovery method. Pakistan Journal of Engineering and Applied Sciences, 22(1), 64–71.
  • Almusawi, A., Sengoz, B. and Topal, A. (2021a). Evaluation of mechanical properties of different asphalt concrete types in relation with mixing and compaction temperatures. Construction and Building Materials, 268, 121140. https://doi.org/10.1016/j.conbuildmat.2020.121140.
  • Almusawi, A., Sengoz, B. and Topal, A. (2021b). Investigation of mixing and compaction temperatures of modified hot asphalt and warm mix asphalt. Periodica Polytechnica Civil Engineering, 65(1), 72-83. https://doi.org/10.3311/PPci.15118.
  • Almusawi, A., Sengoz, B., Topal, A. and Oner, J. (2019). Comparison between zero shear viscosity and steady shear flow methods to determine mixing and compaction temperatures of PMB. Eurasian Journal of Civil Engineering and Architecture, 3(2), 1-8.
  • Athira, P. K., Atul Narayan, S. P., Murali Krishnan, J. and Jain, P. K. (2020). Comparison of binder and mixture tests to characterize permanent deformation of elastomer and terpolymer modified binders. Construction and Building Materials, 264, 120138. https://doi.org/10.1016/j.conbuildmat.2020.120138.
  • Bagdat, T., Galiya, I. and Yerik, A. (2015). Rheological properties of oxidized bitumen with polymer additive. Journal of Applied Sciences, 15(1), 129-137.
  • Bhurke, A. S., Shin, E. E. and Drzal, L. T. (1997). Fracture morphology and fracture toughness measurement of polymer-modified asphalt concrete. Asphalt Mixture Quality, Characteristics, and Performance(1590), 23-33.
  • Bricker, R. M. and Hesp, S. A. M. (2013). Modulated differential scanning calorimetry study of physical hardening rates in asphalt cements. 2013 Airfield & Highway Pavement Conference (pp. 955-966). Los Angeles, California, United States. https://doi.org/10.1061/9780784413005.079.
  • Brule, B., Brion, Y. and Tanguy, A. (1988). Paving asphalt polymer blends: Relationships between composition, structure and properties (with discussion). Association of Asphalt Paving Technologists Proc (pp. 41-64).
  • Bulatovic, V. O., Rek, V. and Markovic, J. (2014a). Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate. Polymer Engineering and Science, 54(5), 1056-1065. https://doi.org/10.1002/pen.23649.
  • Bulatovic, V. O., Rek, V. and Markovic, K. J. (2012). Permanent deformation of polymer modified bitumen. Road and Rail Infrastructure Ii, 317-326.
  • Bulatovic, V. O., Rek, V. and Markovic, K. J. (2013). Influence of polymer types on bitumen engineering properties. Materials Research Innovations, 17(3), 189-194. https://doi.org/10.1179/1433075x12y.0000000059.
  • Bulatovic, V. O., Rek, V. and Markovic, K. J. (2014b). Effect of polymer modifiers on the properties of bitumen. Journal of Elastomers and Plastics, 46(5), 448-469. https://doi.org/10.1177/0095244312469964.
  • Chiono, V., Filippi, S., Yordanov, H., Minkova, L. and Magagnini, P. (2003). Reactive compatibilizer precursors for LDPE/PA6 blends. III: ethylene–glycidylmethacrylate copolymer. Polymer, 44(8), 2423-2432. https://doi.org/10.1016/S0032-3861(03)00134-4.
  • Collins, J., Bouldin, M., Gelles, R. and Berker, A. (1991). Improved performance of paving asphalts by polymer modification (with discussion). Journal of the Association of Asphalt Paving Technologists, 60, 43-79.
  • Connan, J., Jones, M. K., Briggs, D. E. G., Eglington, G. and Hagelberg, E. (1999). Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1379), 33-50. https://doi.org/10.1098/rstb.1999.0358.
  • de Sá Araujo, M. d. F. A., Lins, V. d. F. C., Pasa, V. M. D. and Leite, L. F. M. (2013). Weathering aging of modified asphalt binders. Fuel Processing Technology, 115, 19-25. https://doi.org/10.1016/j.fuproc.2013.03.029.
  • Domingos, M. D. I., Faxina, A. and Bernucci, L. L. B. (2020). Rutting on asphalt binders and mixtures modified with PPA and Elvaloy®: laboratory aspects and rheological modeling. 34º Congresso de Pesquisa e Ensino em Transporte da ANPET (pp. 1275-1286).
  • Domingos, M. D. I. and Faxina, A. L. (2015a). Accelerated short-term ageing effects on the rheological properties of modified bitumens with similar high PG grades. Road Materials and Pavement Design, 16(2), 469-480. https://doi.org/10.1080/14680629.2014.995209.
  • Domingos, M. D. I. and Faxina, A. L. (2015b). Rheological analysis of asphalt binders modified with Elvaloy® terpolymer and polyphosphoric acid on the multiple stress creep and recovery test. Materials and Structures, 48(5), 1405-1416. https://doi.org/10.1617/s11527-013-0242-y.
  • Domingos, M. D. I., Faxina, A. L. and Bernucci, L. L. B. (2017). Characterization of the rutting potential of modified asphalt binders and its correlation with the mixture's rut resistance. Construction and Building Materials, 144, 207-213. https://doi.org/10.1016/j.conbuildmat.2017.03.171.
  • Dow. Dow chemicals brand index Elvaloy. (2021, February 02). Retrieved from https://www.dow.com/en-us/brand/elvaloy.html.
  • Dow. ELVALOY™ RET vs. SBS Modified Asphalt. (2021, February 02). Retrieved from https://www.dow.com/en-us/market/mkt-building-construction/sub-build-construction-chem/app-build-constchem-asphalt-modification/ret-vs-sbs-modified-asphalt.html.
  • Gama, D. A., Yan, Y., Rodrigues, J. K. G. and Roque, R. (2018). Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance. Construction and Building Materials, 169, 522-529. https://doi.org/10.1016/j.conbuildmat.2018.02.206.
  • Geckil, T. (2019). Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen. Materials, 12(6). https://doi.org/10.3390/ma12060921.
  • Geckil, T. and Seloglu, M. (2018). Performance properties of asphalt modified with reactive terpolymer. Construction and Building Materials, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036.
  • Hafeez, I. and Kamal, M. A. (2009). A rheological comparison of hard grade binders with polymer modified bitumen under aged and unaged conditions. Materials Characterisation Iv: Computational Methods and Experiments, 64, 105-114. https://doi.org/10.2495/Mc090101.
  • Hampl, R., Vacin, O., Jasso, M., Stastna, J. and Zanzotto, L. (2015). Modeling of tensile creep and recovery of polymer modified asphalt binders at low temperatures. Applied Rheology, 25(3). https://doi.org/10.3933/Applrheol-25-34675.
  • Hesp, S. A. M., Hoare, T. R. and Roy, S. D. (2002). Low-temperature Fracture in Reactive-ethylene-terpolymer-modified Asphalt Binders. International Journal of Pavement Engineering, 3(3), 153-159. https://doi.org/10.1080/1029843021000067809.
  • Irfan, M., Saeed, M., Ahmed, S. and Ali, Y. (2017). Performance Evaluation of Elvaloy as a Fuel-Resistant Polymer in Asphaltic Concrete Airfield Pavements. Journal of Materials in Civil Engineering, 29(10). https://doi.org/10.1061/(Asce)Mt.1943-5533.0002018.
  • Isacsson, U. and Lu, X. (1995). Testing and appraisal of polymer-modified road bitumens - state-of-the-art. Materials and Structures, 28(177), 139-159. https://doi.org/10.1007/Bf02473221.
  • Jasso, M., Hampl, R., Vacin, O., Bakos, D., Stastna, J. and Zanzotto, L. (2015). Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid. Fuel Processing Technology, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002.
  • Javid, M. A. (2016). Effect of polymer modification on rheological properties of asphalt. Journal of Civil Engineering Research, 6(3), 55-60.
  • Keyf, S. (2010). Investigation of penetration and penetration index in bitumen modified with SBS and reactive terpolymer. Sigma, 28, 26-34.
  • Keyf, S. (2015). The modification of bitumen with reactive ethylene terpolymer, styrene butadiene styrene and variable amounts of ethylene vinyl acetate. Research on Chemical Intermediates, 41(3), 1485-1497. https://doi.org/10.1007/s11164-013-1287-9.
  • Keyf, S. (2018). The modification of bitumen with styrene-butadiene-styrene, ethylene vinyl acetate and varying the amount of reactive ethylene terpolymer. Journal of Elastomers and Plastics, 50(3), 241-255. https://doi.org/10.1177/0095244317708590.
  • Keyf, S., Ismail, O. and Corbacioglu, B. D. (2007a). The modification of bitumen with synthetic reactive ethylene terpolymer and ethylene terpolymer. Petroleum Science and Technology, 25(5-6), 561-568. https://doi.org/10.1080/10916460500294259.
  • Keyf, S., Ismail, O. and Corbacioglu, B. D. (2007b). Polymer-modified bitumen using ethylene terpolymers. Petroleum Science and Technology, 25(7), 915-923. https://doi.org/10.1080/10916460500411812.
  • Li, X. J., Clyne, T., Reinke, G., Johnson, E. N., Gibson, N. and Kutay, M. E. (2011). Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid. Transportation Research Record, 2210, 47-56. https://doi.org/10.3141/2210-06.
  • Liu, L. Q., Xiao, F. P., Zhang, H. L. and Amirkhanian, S. (2017). Rheological characteristics of alternative modified binders. Construction and Building Materials, 144, 442-450. https://doi.org/10.1016/j.conbuildmat.2017.03.193.
  • Lotader. Bitumen reactive modification with Lotader® AX range. (2021, February 02). Retrieved from https://www.lotader.com/en/application/bitumen-modification/.
  • Love, C. T., Xian, G. and Karbhari, V. M. (2007). Cathodic disbondment resistance with reactive ethylene terpolymer blends. Progress in Organic Coatings, 60(4), 287-296. https://doi.org/10.1016/j.porgcoat.2007.07.022.
  • Loyens, W. and Groeninckx, G. (2002). Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature. Polymer, 43(21), 5679-5691. https://doi.org/10.1016/S0032-3861(02)00472-X.
  • Michon, L. C., Williams, T. M. and Miknis, F. P. (1998). Use of the environmental scanning electron microscope to investigate three polymer modified asphalts. Petroleum Science and Technology, 16(7-8), 797-809. https://doi.org/10.1080/10916469808949812.
  • Miknis, F. P. and Thomas, K. P. (2008). NMR analysis of polyphosphoric acid-modified bitumens. Road Materials and Pavement Design, 9(1), 59-72. https://doi.org/10.3166/Rmpd.9.59-72.
  • Minkova, L., Yordanov, H. and Filippi, S. (2002). Characterization of blends of LDPE and PA6 with functionalized polyethylenes. Polymer, 43(23), 6195-6204. https://doi.org/10.1016/S0032-3861(02)00532-3.
  • Oruc, S. and Yilmaz, B. (2016). Improvement in performance properties of asphalt using a novel boron-containing additive. Construction and Building Materials, 123, 207-213. https://doi.org/10.1016/j.conbuildmat.2016.07.003.
  • Oruc, S., Yilmaz, B. and Sancak, K. (2016). Effect of boron-containing additives on rheological properties of asphalt binder. Road Materials and Pavement Design, 17(4), 810-824. https://doi.org/10.1080/14680629.2015.1120228.
  • Pazzagli, F. and Pracella, M. (2000). Reactive compatibilization of polyolefin/PET blends by melt grafting with glycidyl methacrylate. Macromolecular Symposia, 149(1), 225-230. https://doi.org/10.1002/1521-3900(200001)149:1<225::AID-MASY225>3.0.CO;2-8.
  • Pérez-Lepe, A., Martínez-Boza, F. J. and Gallegos, C. (2007). High temperature stability of different polymer-modified bitumens: A rheological evaluation. Journal of Applied Polymer Science, 103(2), 1166-1174. https://doi.org/10.1002/app.25336.
  • Perez-Lepe, A., Martinez-Boza, F. J., Gallegos, C., Gonzalez, O., Munoz, M. E. and Santamaria, A. (2003). Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen. Fuel, 82(11), 1339-1348. https://doi.org/10.1016/S0016-2361(03)00065-6.
  • Polacco, G., Stastna, J., Biondi, D., Antonelli, F., Vlachovicova, Z. and Zanzotto, L. (2004a). Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. Journal of Colloid and Interface Science, 280(2), 366-373. https://doi.org/10.1016/j.jcis.2004.08.043.
  • Polacco, G., Stastna, J., Vlachovicova, Z., Biondi, D. and Zanzotto, L. (2004b). Temporary networks in polymer-modified asphalts. Polymer Engineering and Science, 44(12), 2185-2193. https://doi.org/10.1002/pen.20246.
  • Selvavathi, V., Sekar, V. A., Sriram, V. and Sairam, B. (2002). Modifications of bitumen by elastomer and reactive polymer - A comparative study. Petroleum Science and Technology, 20(5-6), 535-547. https://doi.org/10.1081/Lft-120003577.
  • Sengoz, B. and Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897-1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013.
  • Sengoz, B. and Topal, A. (2005). Use of asphalt roofing shingle waste in HMA. Construction and Building Materials, 19(5), 337-346. https://doi.org/10.1016/j.conbuildmat.2004.08.005.
  • Singh, D., Ashish, P. K., Chander, S., Habal, A. and Kataware, A. (2019a). Effect of warm-mix additives and lime on intermediate-temperature fracture property of RET- and PPA-modified asphalt binder. Journal of Materials in Civil Engineering, 31(7), 04019112. https://doi.org/10.1061/(Asce)Mt.1943-5533.0002756.
  • Singh, D., Ashish, P. K., Kataware, A. and Habal, A. (2017). Evaluating performance of PPA-and-Elvaloy-modified binder containing WMA additives and lime using MSCR and LAS tests. Journal of Materials in Civil Engineering, 29(8). https://doi.org/10.1061/(Asce)Mt.1943-5533.0001934.
  • Singh, D., Ashish, P. K., Kataware, A. and Habal, A. (2019b). Effects of WMA additives and hydrated lime on high-stress and high-temperature performance of Elvaloy® - and PPA-modified asphalt binder. Road Materials and Pavement Design, 20(6), 1354-1375. https://doi.org/10.1080/14680629.2018.1446040.
  • Singh, D., Habal, A., Ashish, P. K. and Kataware, A. (2018). Evaluating suitability of energy efficient and anti-stripping additives for polymer and Polyphosphoric acid modified asphalt binder using surface free energy approach. Construction and Building Materials, 158, 949-960. https://doi.org/10.1016/j.conbuildmat.2017.10.079.
  • Skronka, G., Jasso, M. and Vacin, O. 2019. Determination of rutting distresses on hot mix asphalts by advanced techniques MATEC Web of Conferences, EDP Sciences.
  • Suo, Z. and Wong, W. G. (2009). Nonlinear properties analysis on rutting behaviour of bituminous materials with different air void contents. Construction and Building Materials, 23(12), 3492-3498. https://doi.org/10.1016/j.conbuildmat.2009.07.004.
  • Tayfur, S., Ozen, H. and Aksoy, A. (2007). Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, 21(2), 328-337. https://doi.org/10.1016/j.conbuildmat.2005.08.014.
  • Topal, A. (2010). Evaluation of the properties and microstructure of plastomeric polymer modified bitumens. Fuel Processing Technology, 91(1), 45-51. https://doi.org/10.1016/j.fuproc.2009.08.007.
  • Vachhani, K. K. and Mishra, C. (2014). Influence of VG30 grade bitumen with and without reactive ethylene terpolymer (Elvaloy® 4170) in short term aging. International Journal of Current Engineering and Technology, 4(6), 4206-4209.
  • Xu, C., Zhang, Z. Q. and Liu, F. F. (2020). Improving the low-temperature performance of RET modified asphalt mixture with different modifiers. Coatings, 10(11), 1070. https://doi.org/10.3390/coatings10111070.
  • Xu, C., Zhang, Z. Q., Zhao, F. Q., Liu, F. F. and Wang, J. R. (2019). Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP). Construction and Building Materials, 206, 560-575. https://doi.org/10.1016/j.conbuildmat.2019.02.101.
  • Yıldırım, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials, 21(1), 66-72. https://doi.org/10.1016/j.conbuildmat.2005.07.007.
  • Yilmaz, M., Kok, B. V. and Kuloglu, N. (2011). Effects of using asphaltite as filler on mechanical properties of hot mix asphalt. Construction and Building Materials, 25(11), 4279-4286. https://doi.org/10.1016/j.conbuildmat.2011.04.072.
  • Zahoor, M., Nizamuddin, S., Madapusi, S. and Giustozzi, F. (2021). Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123304.
  • Zhu, J. Q., Birgisson, B. and Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derlemeler
Yazarlar

Aytuğ Kumandaş 0000-0003-1765-9963

Erman Çavdar 0000-0002-0238-5245

Erhan Burak Pancar 0000-0002-7958-3434

Şeref Oruç 0000-0001-5788-890X

Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 15 Mart 2021
Kabul Tarihi 24 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kumandaş, A., Çavdar, E., Pancar, E. B., Oruç, Ş. (2021). Reaktif etilen terpolimerlerin bitümün modifikasyonunda kullanımı: Bir literatür araştırması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 845-862. https://doi.org/10.17714/gumusfenbil.894286