Araştırma Makalesi
BibTex RIS Kaynak Göster

AA2024-T3 alüminyum alaşımlarına uygulanan farklı yüzey hazırlama ve pürüzlülük işlemlerinin yapıştırma bağlantılarına etkisi

Yıl 2021, , 1269 - 1281, 15.10.2021
https://doi.org/10.17714/gumusfenbil.895318

Öz

Yapıştırma bağlantılarının dayanımı; yapıştırılan malzemelerin yüzeyine uygulanacak işlemlere ve yapıştırıcıların türüne göre değişiklikler göstermektedir. Özellikle yapışma yüzeyine uygulanacak yüzey işlemleri, yapıştırma bağlantılarının dayanımını arttırmakta önemli bir rol oynamaktadır. Bu çalışmada, farklı yüzey hazırlama işlemlerinin ve yüzey pürüzlülüğünün yapıştırma bağlantılarının hasar yüküne olan etkisi incelenmiştir. Bu amaçla havacılık alanında kullanılan AA2024-T3 alüminyum alaşımı yapıştırılan malzeme olarak kullanılmış ve yapışma yüzeyine mekanik ve kimyasal yüzey hazırlama işlemleri uygulanmıştır. Mekanik yüzey hazırlama işlemi olarak beş farklı boyutta zımparalama, kimyasal yüzey hazırlama işlemi olarak ise sodyum dikromat/sülfürik asit, optimize edilmiş sodyum dikromat/sülfürik asit ve ferrik sülfat/sülfürik asit dağlama çözeltileri kullanılarak alüminyum alaşımlarının yapışma yüzeyleri hazırlanmıştır. Epoksi ve akrilik esaslı yapıştırıcılar, alüminyum alaşımlarının işlem görmüş yüzeylerine uygulanarak tek tesirli bağlantı numunleri üretilmiştir. Uygulanan yüzey işlemleri sonucunda alüminyum alaşımlarının yüzeylerinde oluşan aşınma ve oksit tabaka SEM tekniği ile analiz edilmiştir. Ayrıca, uygulanan farklı yüzey hazırlama işlemlerinin yapışma bağlantılarının mekanik özelliklerine etkisini incelemek amacıyla, hazırlanan bağlantı numuneleri çekme yükü altında test edilmiştir. Deneysel sonuçlar incelendiğinde, yapıştırma bağlantılarının mekanik özelliklerinin uygulanan yüzey işlemlerine bağlı olarak değiştiği görülmüştür. Yapıştırma bağlantıları için optimum yüzey pürüzlülüğü değerlerinin yapıştırıcı türünün epoksi veya akrilik olmasına bağlı olarak değiştiği gözlemlenmiştir. Ayrıca hasar yüzeyleri incelendiğinde, özel kohezif hasar oluştuğu gözlemlenmiştir.

Kaynakça

  • Adin, H., and Turgut, A. (2013). The effects of width on the strength of adhesively bonded z joints subjected to tensile loads. The Journal of Adhesion, 89(1), 1-18. https://doi.org/10.1080/00218464.2012.725619
  • Adin, H. (2017). Effect of overlap length and scarf angle on the mechanical properties of different adhesive joints subjected to tensile loads. Materials Testing, 59(6), 536-546. https://doi.org/10.3139/120.111031
  • Adin, M. Ş., and Kılıçkap, E. (2021). Strength of double-reinforced adhesive joints. Materials Testing, 63(2), 176-181. https://doi.org/10.1515/mt-2020-0024
  • Boutar, Y., Naïmi, S., Mezlini, S. and Ali, M. B. S. (2016). Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. International Journal of Adhesion & Adhesive, 67, 38–43. http://dx.doi.org/10.1016/j.ijadhadh.2015.12.023
  • Cui, J., Wang, S., Wang, S., Chen, S. and Li, G. (2020). Strength and failure analysis of adhesive single-lap joints under shear loading: effects of surface morphologies and overlap zone parameters. Journal of Manufacturing Processes, 56, 238–247. https://doi.org/10.1016/j.jmapro.2020.04.042
  • Ghumatkar, A., Sekhar, R. and Budhe, S. (2017). Experimental study on different adherend surface roughness on the adhesive bond strength. Materials Today: Proceedings, 4(8), 7801–7809. https://doi.org/10.1016/j.matpr.2017.07.115
  • Golru, S.S., Attar, M. M. and Ramezanzadeh, B. (2015). Effects of different surface cleaning procedures on the super ficial morphology and the adhesive strength of epoxy coating on aluminium alloy 1050. Progress in Organic Coatings, 87, 52–60. http://dx.doi.org/10.1016/j.porgcoat.2015.05.005
  • Grard, A., Belec, L., and Perrin, F. X. (2020). Effect of surface morphology on the adhesion of silicone elastomers on AA6061 aluminum alloy. International Journal of Adhesion and Adhesive, 102, 102656. https://doi.org/10.1016/j.ijadhadh.2020.102656
  • Gültekin, K., Akpinar, S. and Özel, A (2015) The effect of moment and flexural rigidity of adherend on the strength of adhesively bonded single lap joints. The Journal of Adhesion, 91(8), 637–650. https://doi.org/10.1080/00218464.2014.953674
  • Hirulkar, N. S., Jaiswal, P. R., Alessandro, P. and Reis, P. (2018). Influence of mechanical surface treatment on the strength of mixed adhesive joint. Materials Today: Proceedings, 5, 18776–18788. https://doi.org/10.1016/j.matpr.2018.06.224 Jawade, S.A., Joshi, R.S. and Desai, S. V. (2020). Comparative study of mechanical properties of additively manufactured aluminum alloy. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.096
  • Kanani, A.Y., Hou, X. and Ye, J. (2020). A novel dissimilar single-lap joint with interfacial stiffness improvement. Composite structures, 252, 112741. https://doi.org/10.1016/j.compstruct.2020.112741
  • Natalia, M. A., Goushegir, S. M., dos Santos, J. F., Canto, L. B. and Amancio-Filho, S. T. (2016). Friction spot joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms. Composites Part B, 94, 197-208. http://dx.doi.org/10.1016/j.compositesb.2016.03.011
  • Özer, H. and Erbayrak, E. (2016). Experimental investigation on the self-healing efficiency of Araldite 2011 adhesive reinforced with thermoplastic microparticles. Rudawska, A. (Ed.), Adhesives:Applications and properties (s. 169-185). London, IntechOpen. http://dx.doi.org/10.5772/62603
  • Saalema, N., Sarkar, D. K., Paynter, R. W., Gallant, D. and Eskandarian, M. (2012). A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Applied Surface Science, 261, 742-748. http://dx.doi.org/10.1016/j.apsusc.2012.08.091
  • Safari, A., Farahani, M. and Ghabezi, P. (2020). Experimental study on the influences of different surface treatment processes and adhesive type on the aluminum adhesive-bonded joint strength. Mechanics Based Design of Structures and Machines, 1-14. https://doi.org/10.1080/15397734.2020.1777876
  • Salstela, J., Suvanto, M. and Pakkanen, T. T. (2016). Influence of hierarchical micro-micro patterning and chemical modifications on adhesion between aluminum and epoxy. International Journal of Adhesion & Adhesive, 66, 128–137. http://dx.doi.org/10.1016/j.ijadhadh.2015.12.036
  • Saraç, İ., Adin, H. and Temiz, Ş. (2018). Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles. Composites Part B: Engineering, 155, 92-103. https://doi.org/10.1016/j.compositesb.2018.08.006
  • Singh, S.S. and Kitey, R. (2017). Effect of interface profile and incident wave characteristics on aluminum/epoxy dynamic adhesion strength. International Journal of Adhesion and Adhesive, 79, 8–17. http://dx.doi.org/10.1016/j.ijadhadh.2017.09.001
  • Wu, X., Zhan, L., Zhao, X., Wang, X. and Chang, T. (2020). Effects of surface pre-treatment and adhesive quantity on interface characteristics of fiber metal laminates. Composite Interfaces, 27(9), 829–843. https://doi.org/10.1080/09276440.2019.1707023
  • Xing, Y., Yang, S., Lu, S., Zhang, P., An, Y. and Zhai, J. (2020). Effect of bonding parameters on compression mechanical properties of bi-directional corrugated honeycomb aluminum. The Journal of Adhesion, 1-19. https://doi.org/10.1080/00218464.2020.1834388
  • Xu, Y., Li, H., Shen, Y., Liu, S., Wang, W., and Tao, J. (2016). Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. International Journal of Adhesion and Adhesives, 70, 74-80. http://dx.doi.org/10.1016/j.ijadhadh.2016.05.007
  • Zhang, J. Zhao, X., Zuo, Y. and Xiong, J. (2008). The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surface & Coatings Technology, 202, 3149–3156. http://dx.doi.org/10.1016/j.surfcoat.2007.10.041

Effect of different surface preparation and roughness treatments applied to AA2024-T3 aluminum alloys in bonded joints

Yıl 2021, , 1269 - 1281, 15.10.2021
https://doi.org/10.17714/gumusfenbil.895318

Öz

Strength of bonding joints varies according to the applied processes on the surface of the adherend and the type of adhesives. Particularly, surface treatments to be applied to the adherend surface play an important role in increasing the strength of the adhesively bonded joints. In this study, the effect of different surface preparation processes and surface roughness on the failure load of adhesively bonded joints was investigated. For this purpose, AA2024-T3 aluminum alloy used in aviation field was used as adherend, mechanical and chemical surface preparation processes were applied to the bonding surface. Sanding in five different sizes as the mechanical surface preparation process and sodium dichromate/sulfuric acid, optimized sodium dichromate/sulfuric acid and ferric sulphate/sulfuric acid etching solutions as the chemical surface preparation process were used to prepare the bonding surfaces of aluminum alloys. Epoxy and acrylic based adhesives were applied to the treated surfaces of aluminum alloys to produce single lap joint samples. As a result of the applied surface treatments, the abrasion and oxide layer formed on the surfaces of aluminum alloys were analyzed by SEM technique. In addition, the prepared joint samples were tested under tensile load in order to examine the effect of different surface preparation processes on the mechanical properties of adhesively bonded joints. When the experimental results were examined, it was seen that the mechanical properties of the adhesive joints changed depending on the applied surface treatments. It was observed that the optimum surface roughness values for bonding joints vary depending on the type of adhesive being epoxy or acrylic. In addition, when the damage surfaces were examined, it was observed that special cohesive failure occurred.

Kaynakça

  • Adin, H., and Turgut, A. (2013). The effects of width on the strength of adhesively bonded z joints subjected to tensile loads. The Journal of Adhesion, 89(1), 1-18. https://doi.org/10.1080/00218464.2012.725619
  • Adin, H. (2017). Effect of overlap length and scarf angle on the mechanical properties of different adhesive joints subjected to tensile loads. Materials Testing, 59(6), 536-546. https://doi.org/10.3139/120.111031
  • Adin, M. Ş., and Kılıçkap, E. (2021). Strength of double-reinforced adhesive joints. Materials Testing, 63(2), 176-181. https://doi.org/10.1515/mt-2020-0024
  • Boutar, Y., Naïmi, S., Mezlini, S. and Ali, M. B. S. (2016). Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. International Journal of Adhesion & Adhesive, 67, 38–43. http://dx.doi.org/10.1016/j.ijadhadh.2015.12.023
  • Cui, J., Wang, S., Wang, S., Chen, S. and Li, G. (2020). Strength and failure analysis of adhesive single-lap joints under shear loading: effects of surface morphologies and overlap zone parameters. Journal of Manufacturing Processes, 56, 238–247. https://doi.org/10.1016/j.jmapro.2020.04.042
  • Ghumatkar, A., Sekhar, R. and Budhe, S. (2017). Experimental study on different adherend surface roughness on the adhesive bond strength. Materials Today: Proceedings, 4(8), 7801–7809. https://doi.org/10.1016/j.matpr.2017.07.115
  • Golru, S.S., Attar, M. M. and Ramezanzadeh, B. (2015). Effects of different surface cleaning procedures on the super ficial morphology and the adhesive strength of epoxy coating on aluminium alloy 1050. Progress in Organic Coatings, 87, 52–60. http://dx.doi.org/10.1016/j.porgcoat.2015.05.005
  • Grard, A., Belec, L., and Perrin, F. X. (2020). Effect of surface morphology on the adhesion of silicone elastomers on AA6061 aluminum alloy. International Journal of Adhesion and Adhesive, 102, 102656. https://doi.org/10.1016/j.ijadhadh.2020.102656
  • Gültekin, K., Akpinar, S. and Özel, A (2015) The effect of moment and flexural rigidity of adherend on the strength of adhesively bonded single lap joints. The Journal of Adhesion, 91(8), 637–650. https://doi.org/10.1080/00218464.2014.953674
  • Hirulkar, N. S., Jaiswal, P. R., Alessandro, P. and Reis, P. (2018). Influence of mechanical surface treatment on the strength of mixed adhesive joint. Materials Today: Proceedings, 5, 18776–18788. https://doi.org/10.1016/j.matpr.2018.06.224 Jawade, S.A., Joshi, R.S. and Desai, S. V. (2020). Comparative study of mechanical properties of additively manufactured aluminum alloy. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.096
  • Kanani, A.Y., Hou, X. and Ye, J. (2020). A novel dissimilar single-lap joint with interfacial stiffness improvement. Composite structures, 252, 112741. https://doi.org/10.1016/j.compstruct.2020.112741
  • Natalia, M. A., Goushegir, S. M., dos Santos, J. F., Canto, L. B. and Amancio-Filho, S. T. (2016). Friction spot joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms. Composites Part B, 94, 197-208. http://dx.doi.org/10.1016/j.compositesb.2016.03.011
  • Özer, H. and Erbayrak, E. (2016). Experimental investigation on the self-healing efficiency of Araldite 2011 adhesive reinforced with thermoplastic microparticles. Rudawska, A. (Ed.), Adhesives:Applications and properties (s. 169-185). London, IntechOpen. http://dx.doi.org/10.5772/62603
  • Saalema, N., Sarkar, D. K., Paynter, R. W., Gallant, D. and Eskandarian, M. (2012). A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Applied Surface Science, 261, 742-748. http://dx.doi.org/10.1016/j.apsusc.2012.08.091
  • Safari, A., Farahani, M. and Ghabezi, P. (2020). Experimental study on the influences of different surface treatment processes and adhesive type on the aluminum adhesive-bonded joint strength. Mechanics Based Design of Structures and Machines, 1-14. https://doi.org/10.1080/15397734.2020.1777876
  • Salstela, J., Suvanto, M. and Pakkanen, T. T. (2016). Influence of hierarchical micro-micro patterning and chemical modifications on adhesion between aluminum and epoxy. International Journal of Adhesion & Adhesive, 66, 128–137. http://dx.doi.org/10.1016/j.ijadhadh.2015.12.036
  • Saraç, İ., Adin, H. and Temiz, Ş. (2018). Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles. Composites Part B: Engineering, 155, 92-103. https://doi.org/10.1016/j.compositesb.2018.08.006
  • Singh, S.S. and Kitey, R. (2017). Effect of interface profile and incident wave characteristics on aluminum/epoxy dynamic adhesion strength. International Journal of Adhesion and Adhesive, 79, 8–17. http://dx.doi.org/10.1016/j.ijadhadh.2017.09.001
  • Wu, X., Zhan, L., Zhao, X., Wang, X. and Chang, T. (2020). Effects of surface pre-treatment and adhesive quantity on interface characteristics of fiber metal laminates. Composite Interfaces, 27(9), 829–843. https://doi.org/10.1080/09276440.2019.1707023
  • Xing, Y., Yang, S., Lu, S., Zhang, P., An, Y. and Zhai, J. (2020). Effect of bonding parameters on compression mechanical properties of bi-directional corrugated honeycomb aluminum. The Journal of Adhesion, 1-19. https://doi.org/10.1080/00218464.2020.1834388
  • Xu, Y., Li, H., Shen, Y., Liu, S., Wang, W., and Tao, J. (2016). Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. International Journal of Adhesion and Adhesives, 70, 74-80. http://dx.doi.org/10.1016/j.ijadhadh.2016.05.007
  • Zhang, J. Zhao, X., Zuo, Y. and Xiong, J. (2008). The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surface & Coatings Technology, 202, 3149–3156. http://dx.doi.org/10.1016/j.surfcoat.2007.10.041
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kürşat Gültekin 0000-0002-6790-6822

Yasemin Korkmaz 0000-0002-4516-985X

Yayımlanma Tarihi 15 Ekim 2021
Gönderilme Tarihi 13 Mart 2021
Kabul Tarihi 18 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Gültekin, K., & Korkmaz, Y. (2021). AA2024-T3 alüminyum alaşımlarına uygulanan farklı yüzey hazırlama ve pürüzlülük işlemlerinin yapıştırma bağlantılarına etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1269-1281. https://doi.org/10.17714/gumusfenbil.895318