Araştırma Makalesi
BibTex RIS Kaynak Göster

Kontrollü Doğrusal Katılaştırılan Al-Cu Alaşımının Mikroyapısı, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Hızına Bağlı Değişimi

Yıl 2018, Cilt: 8 Sayı: 2, 209 - 221, 31.07.2018
https://doi.org/10.17714/gumusfenbil.349996

Öz

Al–Cu alaşımı temel alaşımlar içinde tanımlanması
nedeniyle endüstride oldukça fazla kullanım alanı bulmasına rağmen elde edilen
alaşımın kontrolsüz döküm hali her zaman istenilen özellik ve performansa sahip
değildir. İstenilen özellik ve performansta üretim için katılaştırma koşulları
değiştirilir ve bu değişime bağlı olarak elde edilen sonuçların değerlendirilmesi
yapılır. Katılaştırma koşullarından katılaştırma hızının etkisi ile m
ikroyapı özelliklerinin değişimi; malzemelerin mekanik, elektriksel ve
ısısal özelliklerini de etkilediği bilinmektedir.
Bu nedenle mikroyapı değerlendirmesinin en doğru şekilde yapılabileceği
ötektik
Al–%33ağ. Cu bileşeninin faz diyagramı yardımıyla
belirlenmesinden sonra
Bridgman tipi fırın
vasıtasıyla sabit sıcaklık gradyenti
(G = 8.50 K/mm) ve beş farklı katılaştırma hızında (V = 8.25˗164.80 µm/s) kontrollü doğrusal katılaştırma deneyleri yapılmıştır. Böylece
katılaştırma hızının mikroyapı üzerine etkisi ve mikroyapıdaki değişimin
etkisiyle mekanik özelliklerden mikrosertlik,
çekmedayanım ve elektriksel özdirenç değerlerinin değişimi araştırılmıştır. Mikroyapı, katılaştırma hızı, mikrosertlik, çekmedayanım ve elektriksel özdirenç
değerleri arasındaki ilişkileri ortaya koyabilmek için lineer regrasyon analizi
ve Hall–Petch tipi bağıntılar kullanılmıştır. Ayrıca elde edilen sonuçlar
benzer deneysel sonuçlarla kıyaslanmıştır.

Kaynakça

  • Boettinger W.J., Coriell S.R., Greer A.L., Karma A., Kurz W., Rappaz M. ve Trivedi R., 2000. Solidification Microstructures: Recent Developments, Future Directions. Acta mater 48, 43–70.
  • Böyük U., 2009. Üçlü Metalik Alaşımların Kontrollü Doğrusal Katılaştırılması ve Mikrosertliğinin İncelenmesi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği Kayseri.
  • Çadırlı E., Ülgen A. ve Gündüz M., 1999. Directional Solidification of the Aluminium-Copper Eutectic Alloy. Materials Transactions JIM 40(9), 989–996.
  • Cante M.V., Spinelli J.E., Cheung N., ve Garcia A., 2010. The Correlation Between Dendritic Microstructure and Mechanical Properties of Directionally Solidified Hypoeutectic Al-Ni Alloys, Met Mater-Int 16, 39.
  • Das S., Mondal D.P., Sawla S. ve Ramkrishnan N., 2008. Synergic effect of reinforcement and heat treatment on the two body abrasive wear of an Al–Si alloy under varying loads and abrasive sizes. Wear 264, 47–59.
  • Du D.F., Hou L., Gagnoud A., Ren Z.M., Fautrelle Y., Cao G.H. ve Li X., 2014. Effect of an axial high magnetic field on Sn dendrite morphology of Pb−Sn alloys during directional solidification. Journal of Alloys and Compounds 588, 190−198.
  • Engin S., 2013. Kontrollü Katılaştırılan Çok Bileşenli Ötektik Alaşımların, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Parametrelerine Bağlılığının İncelenmesi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği, Kayseri.
  • Goulart P.R., Spinelli J.E., Cheung N. ve Garcia A., 2010. The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys. Mater Chem Phys119, 272.
  • Goulart P.R., Spinelli J.E., Os´orio W.R. ve Garcia A. 2006. Mechanical properties as a function of microstructure and solidification thermal variables of Al–Si castings. Materials Science and Engineering A 421, 245–253.
  • Gündüz M., Kaya H., Çadırlı E. ve Özmen A., 2004. Interflake spacings and undercoolings in Al-Si irregular eutectic alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure And Processing 369, 215–229.
  • Hecht U., Granasy L., Pusztai T., Böttger B., Apel M., Witusiewicz V., Ratke L., De Wilde J., Froyen L., Camel D., Drevet B., Faivre G., Fries S.G., Legendre B. ve Rex S., 2004. Multiphase solidification in multicomponent alloys. Materials Science and Engineering R 46, 1–49.
  • Jackson K.A. ve Hunt J.D., 1966. Lamellar and Rod Eutectic Growth, Trans. Metall. Soc. A.I.M.E. 236, 1129.
  • Jones H. 2005, Some effects of solidification kinetics on microstructure formation in aluminium-base alloys, Materials Science and Engineering A;413–414:165–173
  • Kaya H., Böyük U., Çadırlı E. ve Maraşlı N. 2012 Measurements of the microhardness, electrical and thermal properties of the Al-Ni eutectic alloy, Mater Design 34, 707.
  • Kaya H., Böyük U., Çadırlı E. ve Maraşlı N. 2013, Influence of growth rate on microstructure, microhardness, and electrical resistivity of directionally solidified Al-7 wt% Ni hypo-eutectic alloy, Met Mater-Int, 19(1), 39.
  • Kaya H., Böyük U., Çadırlı E. ve Maraşlı N., 2010. Unidirectional solidification of aluminium-nickel eutectic alloy. Kovove Mater 48(5), 291.
  • Kaya H., Cadirli E., Gündüz M. ve Ülgen A. 2003. Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy. Journal of Materials Engineering and Performance 12(5), 544–551. Kaya H., Gündüz M., Çadırlı E. ve Maraşlı N., 2009. Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys. Journal of Alloys and Compounds 478, 281–286.
  • Li X., Fautrelle Y. ve Ren Z., 2007. Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta Materialia 55, 3803–3813.
  • Li X., Ren Z. ve Fautrelle Y., 2006. Effect of a high axial magnetic field on the microstructure in a directionally solidified Al–Al2Cu eutectic alloy. Acta Materialia 54, 5349–5360.
  • Miller J.D. ve Pollock T.M., 2014. Stability of dendrite growth during directional solidification in the presence of a non-axial thermal field. Acta Materialia 78, 23−36.
  • Min Q.U., Lin L.I.U., Yan C.U.I. ve Feng-bin L.I.U., 2015. Interfacial morphology evolution in directionally solidified Al−1.5%Cu alloy. Trans. Nonferrous Met. Soc. China 25, 405−411.
  • Ourdjini A., Liu J. ve Elliott R., 1994. Eutectic Spacing Selection in Al-Cu System, Mater Sci Tech-Lond 10, 312.
  • Paliwal M. ve Jung I. 2013. The evolution of the growth morphology in Mg−Al alloys depending on the cooling rate during solidification. Acta Materialia 61, 4848−4860.
  • Peres M.D., Siqueira C.A.ve Garcia A., 2004. Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds 38, 168–181.
  • Rana R.S., Purohit R. ve Das S., 2012. Reviews on the Influences of Alloying Elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites. International Journal of Scientific and Research Publications 2, 1–7.
  • Silva B.L., Araujo I., Silva W.S., Goulart P.R., Garcia A. ve Spinelli J.E., 2011. Correlation between dendrite arm spacing and microhardness during unsteady-state directional solidification of Al-Ni alloys, Phil Mag Lett 91, 337.
  • Silva B.L., Garcia A. ve Spinelli J.E., 2012. The effects of microstructure and intermetallic phases of directionally solidified Al-Fe alloys on microhardness. Mater Lett 89, 291.
  • Smiths F.M., 1958. Measurement of Sheet Resistivities with the Four-Point Probe. The Bell Sys. Tech. J 37, 711.
  • Walker H., Shan Liu, Lee J.H. ve Trivedi R., 2007. Eutectic Growth In Three Dimensions. Metallurgical And Materials Transactions A 38A, 1417–1425.

Variations with Growth Rate of the Microstructural, Mechanical and Electrical Properties of Directionally Solidified the Al-Cu Alloy

Yıl 2018, Cilt: 8 Sayı: 2, 209 - 221, 31.07.2018
https://doi.org/10.17714/gumusfenbil.349996

Öz

Although
it has a lot of usage area in the industry because the Al-Cu alloy is defined
among the base alloys, the uncontrolled solidified casting of this alloy does
not always have the desired properties and performance. For the production of
Al-Cu alloys with superior properties, the solidification parameters known as
the solidification rate, temperature gradient and composition ratio are changed
and the results of this change are evaluated. It is known that changing the 
properties
of the microstructure by growth rate affects the mechanical, electrical and
thermal properties of the materials. For this reason, Al–%33ağ.Cu eutectic
composition to carrying out correctly microstructure evaluation was prepared, then
controlled solidification experiments were carried out by a Bridgman type
furnace at a constant temperature gradient (G = 8.50 K/mm) and at five
different growth ratios (V = 8.25˗164.80 µm/s)
. Thus, the effect of the growth rate on the microstructure was
investigated and values of microhardness, tensile strength and electrical
resistivity were investigated with the effect of change in the microstructure. Both
linear regression analysis and Hall-Petch type correlations were used to
determine the relationship between microstructure, microhardness, tensile
strength and electrical resistivity values. The results obtained in this work
were compared with the previous similar experimental results.

Kaynakça

  • Boettinger W.J., Coriell S.R., Greer A.L., Karma A., Kurz W., Rappaz M. ve Trivedi R., 2000. Solidification Microstructures: Recent Developments, Future Directions. Acta mater 48, 43–70.
  • Böyük U., 2009. Üçlü Metalik Alaşımların Kontrollü Doğrusal Katılaştırılması ve Mikrosertliğinin İncelenmesi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği Kayseri.
  • Çadırlı E., Ülgen A. ve Gündüz M., 1999. Directional Solidification of the Aluminium-Copper Eutectic Alloy. Materials Transactions JIM 40(9), 989–996.
  • Cante M.V., Spinelli J.E., Cheung N., ve Garcia A., 2010. The Correlation Between Dendritic Microstructure and Mechanical Properties of Directionally Solidified Hypoeutectic Al-Ni Alloys, Met Mater-Int 16, 39.
  • Das S., Mondal D.P., Sawla S. ve Ramkrishnan N., 2008. Synergic effect of reinforcement and heat treatment on the two body abrasive wear of an Al–Si alloy under varying loads and abrasive sizes. Wear 264, 47–59.
  • Du D.F., Hou L., Gagnoud A., Ren Z.M., Fautrelle Y., Cao G.H. ve Li X., 2014. Effect of an axial high magnetic field on Sn dendrite morphology of Pb−Sn alloys during directional solidification. Journal of Alloys and Compounds 588, 190−198.
  • Engin S., 2013. Kontrollü Katılaştırılan Çok Bileşenli Ötektik Alaşımların, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Parametrelerine Bağlılığının İncelenmesi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği, Kayseri.
  • Goulart P.R., Spinelli J.E., Cheung N. ve Garcia A., 2010. The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys. Mater Chem Phys119, 272.
  • Goulart P.R., Spinelli J.E., Os´orio W.R. ve Garcia A. 2006. Mechanical properties as a function of microstructure and solidification thermal variables of Al–Si castings. Materials Science and Engineering A 421, 245–253.
  • Gündüz M., Kaya H., Çadırlı E. ve Özmen A., 2004. Interflake spacings and undercoolings in Al-Si irregular eutectic alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure And Processing 369, 215–229.
  • Hecht U., Granasy L., Pusztai T., Böttger B., Apel M., Witusiewicz V., Ratke L., De Wilde J., Froyen L., Camel D., Drevet B., Faivre G., Fries S.G., Legendre B. ve Rex S., 2004. Multiphase solidification in multicomponent alloys. Materials Science and Engineering R 46, 1–49.
  • Jackson K.A. ve Hunt J.D., 1966. Lamellar and Rod Eutectic Growth, Trans. Metall. Soc. A.I.M.E. 236, 1129.
  • Jones H. 2005, Some effects of solidification kinetics on microstructure formation in aluminium-base alloys, Materials Science and Engineering A;413–414:165–173
  • Kaya H., Böyük U., Çadırlı E. ve Maraşlı N. 2012 Measurements of the microhardness, electrical and thermal properties of the Al-Ni eutectic alloy, Mater Design 34, 707.
  • Kaya H., Böyük U., Çadırlı E. ve Maraşlı N. 2013, Influence of growth rate on microstructure, microhardness, and electrical resistivity of directionally solidified Al-7 wt% Ni hypo-eutectic alloy, Met Mater-Int, 19(1), 39.
  • Kaya H., Böyük U., Çadırlı E. ve Maraşlı N., 2010. Unidirectional solidification of aluminium-nickel eutectic alloy. Kovove Mater 48(5), 291.
  • Kaya H., Cadirli E., Gündüz M. ve Ülgen A. 2003. Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy. Journal of Materials Engineering and Performance 12(5), 544–551. Kaya H., Gündüz M., Çadırlı E. ve Maraşlı N., 2009. Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys. Journal of Alloys and Compounds 478, 281–286.
  • Li X., Fautrelle Y. ve Ren Z., 2007. Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta Materialia 55, 3803–3813.
  • Li X., Ren Z. ve Fautrelle Y., 2006. Effect of a high axial magnetic field on the microstructure in a directionally solidified Al–Al2Cu eutectic alloy. Acta Materialia 54, 5349–5360.
  • Miller J.D. ve Pollock T.M., 2014. Stability of dendrite growth during directional solidification in the presence of a non-axial thermal field. Acta Materialia 78, 23−36.
  • Min Q.U., Lin L.I.U., Yan C.U.I. ve Feng-bin L.I.U., 2015. Interfacial morphology evolution in directionally solidified Al−1.5%Cu alloy. Trans. Nonferrous Met. Soc. China 25, 405−411.
  • Ourdjini A., Liu J. ve Elliott R., 1994. Eutectic Spacing Selection in Al-Cu System, Mater Sci Tech-Lond 10, 312.
  • Paliwal M. ve Jung I. 2013. The evolution of the growth morphology in Mg−Al alloys depending on the cooling rate during solidification. Acta Materialia 61, 4848−4860.
  • Peres M.D., Siqueira C.A.ve Garcia A., 2004. Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds 38, 168–181.
  • Rana R.S., Purohit R. ve Das S., 2012. Reviews on the Influences of Alloying Elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites. International Journal of Scientific and Research Publications 2, 1–7.
  • Silva B.L., Araujo I., Silva W.S., Goulart P.R., Garcia A. ve Spinelli J.E., 2011. Correlation between dendrite arm spacing and microhardness during unsteady-state directional solidification of Al-Ni alloys, Phil Mag Lett 91, 337.
  • Silva B.L., Garcia A. ve Spinelli J.E., 2012. The effects of microstructure and intermetallic phases of directionally solidified Al-Fe alloys on microhardness. Mater Lett 89, 291.
  • Smiths F.M., 1958. Measurement of Sheet Resistivities with the Four-Point Probe. The Bell Sys. Tech. J 37, 711.
  • Walker H., Shan Liu, Lee J.H. ve Trivedi R., 2007. Eutectic Growth In Three Dimensions. Metallurgical And Materials Transactions A 38A, 1417–1425.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sevda Engin

Uğur Büyük

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 8 Kasım 2017
Kabul Tarihi 26 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 2

Kaynak Göster

APA Engin, S., & Büyük, U. (2018). Kontrollü Doğrusal Katılaştırılan Al-Cu Alaşımının Mikroyapısı, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Hızına Bağlı Değişimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(2), 209-221. https://doi.org/10.17714/gumusfenbil.349996