Araştırma Makalesi
BibTex RIS Kaynak Göster

Cq(X) Uzayının Sayılabilirlik Özellikleri Üzerine Bazı Sonuçlar

Yıl 2019, Cilt: 9 Sayı: 3, 582 - 587, 15.07.2019
https://doi.org/10.17714/gumusfenbil.551030

Öz

Bu
makalenin amacı C(X) kümesi üzerindeki yarı kompakt-açık topolojinin ikinci
sayılabilirlik, ayrılabilirlik, B0
-uzay
özelliği, N0
-uzay
özelliği ve kozmik uzay özelliği gibi sayılabilirlik özellikleri için bazı
sonuçlar verilmiştir. Son olarak bu sonuçlar C(X) kümesi üzerindeki
clp-kompakt-açık topoloji için de elde edilmiştir
.


Kaynakça

  • Arens, R. F., 1946. A topology for spaces of transformations. Annals of Mathematics, 47, 480–495.
  • Arens, R. ve Dugundji, J., 1951. Topologies for function spaces. Pacific Journal of Mathematics, 1, 5–31.
  • Banakh, T., 2015. P_0-spaces. Topology and its Applications, 195, 151–173.
  • D’Aristotle, A. J., 1973. Quasicompactness and functionally Hausdorff spaces. Journal of the Australian Mathematical Society, 15(3), 319–324.
  • Fox, R. H., 1945. On topologies for function spaces. Bulletin of the American Mathematical Society, 51, 429–432.
  • Frolik, Z., 1959. Generalization of compact and Lindelöf spaces. Czechoslovak Mathematical Journal, 13(84), 172–217 (Russian).
  • Gruenhage, G., 1992. Generalized metric spaces and metrization. s. 239–274. Recent progress in general topology, North-Holland, Amsterdam.
  • Gulick, D., 1992. The σ-compact-open topology and its relatives. Mathematica Scandinavica, 30, 159–176.
  • Jackson, J. R., 1952. Comparison of topologies on function spaces. Proc. Amer. Math. Soc., 3, 156–158.
  • Kundu S. ve McCoy, R.A., 1993. Topologies between compact and uniform convergence on function spaces. Internat. J. Math. Math. Sci., 16, 101–109.
  • Kundu, S. ve Garg, P., 2006. The pseudocompact-open topology on C(X). Topology Proceedings, 30(1), 279–299.
  • Kundu, S. ve Raha, A. B., 1995. The bounded-open topology and its relatives. Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 27, 61–77.
  • McArthur, W. G., 1973. G_δ-diagonals and metrization theorems. Pacific Journal of Mathematics, 44(2), 613-617
  • McCoy, R. A. ve Ntantu, I., 1988. Topological Properties of Spaces of Continuous Functions. Springer-Verlag, Berlin.
  • Michael, E., 1966. ℵ_0-spaces. J. Math. Mech, 15, 983–1002.
  • Ntantu I., 1985. The compact-open topology on C(X), PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.
  • Osipov, A. V., 2012. The C-compact-open topology on function spaces. Topology and its Applications, 159, 3059– 3066.
  • Osmanoglu, I., 2017. Clp-compact-open topology on function space. Journal of Advanced Studies in Topology, 8(1), 31–39.
  • Porter, K. F., 1993. The open-open topology for function spaces. InternationalJournal of Mathematics and Mathematical Sciences, 16 (1), 111–116.
  • Sondore, A. ve Sostak, A., 1994. On clp-compact and countably clp-compact spaces. Acta Univ. Latviensis, 595(1994), 123–143.
  • Tokat, D. ve Osmanoglu, I., 2016. Some properties of the quasicompact-open topology on C(X). Journal of Nonlinear Sciences and Applications, 9, 3511–3518.

Some Results on Countability Properties of C_q (X)

Yıl 2019, Cilt: 9 Sayı: 3, 582 - 587, 15.07.2019
https://doi.org/10.17714/gumusfenbil.551030

Öz

The aim of this
article is to study the countability properties of the quasi compact-open
topology on C (X)
such as second
countability, separability and the properties of B0
-spaces, N0-spaces and cosmic
spaces. Finally, these results were obtained for clp-compact-open topology on C
(X)
.

Kaynakça

  • Arens, R. F., 1946. A topology for spaces of transformations. Annals of Mathematics, 47, 480–495.
  • Arens, R. ve Dugundji, J., 1951. Topologies for function spaces. Pacific Journal of Mathematics, 1, 5–31.
  • Banakh, T., 2015. P_0-spaces. Topology and its Applications, 195, 151–173.
  • D’Aristotle, A. J., 1973. Quasicompactness and functionally Hausdorff spaces. Journal of the Australian Mathematical Society, 15(3), 319–324.
  • Fox, R. H., 1945. On topologies for function spaces. Bulletin of the American Mathematical Society, 51, 429–432.
  • Frolik, Z., 1959. Generalization of compact and Lindelöf spaces. Czechoslovak Mathematical Journal, 13(84), 172–217 (Russian).
  • Gruenhage, G., 1992. Generalized metric spaces and metrization. s. 239–274. Recent progress in general topology, North-Holland, Amsterdam.
  • Gulick, D., 1992. The σ-compact-open topology and its relatives. Mathematica Scandinavica, 30, 159–176.
  • Jackson, J. R., 1952. Comparison of topologies on function spaces. Proc. Amer. Math. Soc., 3, 156–158.
  • Kundu S. ve McCoy, R.A., 1993. Topologies between compact and uniform convergence on function spaces. Internat. J. Math. Math. Sci., 16, 101–109.
  • Kundu, S. ve Garg, P., 2006. The pseudocompact-open topology on C(X). Topology Proceedings, 30(1), 279–299.
  • Kundu, S. ve Raha, A. B., 1995. The bounded-open topology and its relatives. Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 27, 61–77.
  • McArthur, W. G., 1973. G_δ-diagonals and metrization theorems. Pacific Journal of Mathematics, 44(2), 613-617
  • McCoy, R. A. ve Ntantu, I., 1988. Topological Properties of Spaces of Continuous Functions. Springer-Verlag, Berlin.
  • Michael, E., 1966. ℵ_0-spaces. J. Math. Mech, 15, 983–1002.
  • Ntantu I., 1985. The compact-open topology on C(X), PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.
  • Osipov, A. V., 2012. The C-compact-open topology on function spaces. Topology and its Applications, 159, 3059– 3066.
  • Osmanoglu, I., 2017. Clp-compact-open topology on function space. Journal of Advanced Studies in Topology, 8(1), 31–39.
  • Porter, K. F., 1993. The open-open topology for function spaces. InternationalJournal of Mathematics and Mathematical Sciences, 16 (1), 111–116.
  • Sondore, A. ve Sostak, A., 1994. On clp-compact and countably clp-compact spaces. Acta Univ. Latviensis, 595(1994), 123–143.
  • Tokat, D. ve Osmanoglu, I., 2016. Some properties of the quasicompact-open topology on C(X). Journal of Nonlinear Sciences and Applications, 9, 3511–3518.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İsmail Osmanoğlu 0000-0002-1005-4075

Yayımlanma Tarihi 15 Temmuz 2019
Gönderilme Tarihi 8 Nisan 2019
Kabul Tarihi 21 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 3

Kaynak Göster

APA Osmanoğlu, İ. (2019). Cq(X) Uzayının Sayılabilirlik Özellikleri Üzerine Bazı Sonuçlar. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(3), 582-587. https://doi.org/10.17714/gumusfenbil.551030