Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Topologıcal Properties of Generalized Grand Lebesgue Sequence Spaces Defined by Modulus Function

Yıl 2020, Cilt: 10 Sayı: 4, 1144 - 1149, 15.10.2020
https://doi.org/10.17714/gumusfenbil.732116

Öz

Kaynakça

  • Iwaniec, T. ve Sbordone, C., 1992. On the Integrability of the Jacobian Under Minimal Hypotheses. Archive for Rational Mechanics and analysis. 119(2), 129-143.
  • Jain, P. ve Kumari, S., 2012. On Grand Lorentz Spaces and the Maximal Operator. Georgian Mathematical Journal. 19, 235-246.
  • Maddox, I. J., 1986. Sequence Spaces Defined by a Modulus. Mathematical Proceeding of the Cambridge Philosophical Society. 100, 161-166.
  • Malkowsky, E. ve Savaş, E., 2000. Some λ-Sequence Spaces Defined by a Modulus. Archiv der Mathematik. 36(3), 219-228.
  • Nakano, H., 1953. Concave Modular. Journal of the Mathematical Society of Japan. 5, 29-49.
  • Oğur, O., 2015. A New Double Cesaro Sequence Space Defined by Modulus Functions. Journal of Applied Functional Analysis. 10(1), 109-116.
  • Oğur, O. ve Duyar, C., 2016. On Generalized Lorentz Sequence Space Defined by Modulus Functions. Filomat. 30(2), 497-504.
  • Rafeiro, H., Samko, S., Umarkhadzhiev S., 2018. Grand Lebesgue Sequence Spaces. Georgian Mathematical Journal. 19(2), 235-246.
  • Ruckle, W. H.,1973. FK-Spaces in which the Sequence of Coordinate Vectors is Bounded. Canadian Journal of Mathematics. 25, 973-978.
  • Samko, S. ve Umarkhadzhiev S., 2017. On Grand Lebesgue Spaces on Sets of Infinite Measure. Mathematische Nachrichten. 290, 913-919.
  • Savaş, E., 1999. On Some Generalized Sequence Spaces Defined by a Modulus. Indian Journal of Pure and Applied Mathematics. 30(5), 459-464.
  • Wilansky, A., 1964. Functıonal Analysis: New York, Blaisdell.

Modülüs Fonksiyonu ile Tanımlanmış Genelleştirilmiş Büyük Lebesgue Dizi Uzaylarının Topolojik Bazı Özellikleri

Yıl 2020, Cilt: 10 Sayı: 4, 1144 - 1149, 15.10.2020
https://doi.org/10.17714/gumusfenbil.732116

Öz

Bu çalışmada, Rafeiro vd. (2018) tarafından tanımlanan büyük Lebesgue dizi uzaylarını modülüs fonksiyonu yardımıyla genelleştirdik. Ayrıca, bu uzayların bazı topolojik ve kapsama özelliklerini inceledik.

Kaynakça

  • Iwaniec, T. ve Sbordone, C., 1992. On the Integrability of the Jacobian Under Minimal Hypotheses. Archive for Rational Mechanics and analysis. 119(2), 129-143.
  • Jain, P. ve Kumari, S., 2012. On Grand Lorentz Spaces and the Maximal Operator. Georgian Mathematical Journal. 19, 235-246.
  • Maddox, I. J., 1986. Sequence Spaces Defined by a Modulus. Mathematical Proceeding of the Cambridge Philosophical Society. 100, 161-166.
  • Malkowsky, E. ve Savaş, E., 2000. Some λ-Sequence Spaces Defined by a Modulus. Archiv der Mathematik. 36(3), 219-228.
  • Nakano, H., 1953. Concave Modular. Journal of the Mathematical Society of Japan. 5, 29-49.
  • Oğur, O., 2015. A New Double Cesaro Sequence Space Defined by Modulus Functions. Journal of Applied Functional Analysis. 10(1), 109-116.
  • Oğur, O. ve Duyar, C., 2016. On Generalized Lorentz Sequence Space Defined by Modulus Functions. Filomat. 30(2), 497-504.
  • Rafeiro, H., Samko, S., Umarkhadzhiev S., 2018. Grand Lebesgue Sequence Spaces. Georgian Mathematical Journal. 19(2), 235-246.
  • Ruckle, W. H.,1973. FK-Spaces in which the Sequence of Coordinate Vectors is Bounded. Canadian Journal of Mathematics. 25, 973-978.
  • Samko, S. ve Umarkhadzhiev S., 2017. On Grand Lebesgue Spaces on Sets of Infinite Measure. Mathematische Nachrichten. 290, 913-919.
  • Savaş, E., 1999. On Some Generalized Sequence Spaces Defined by a Modulus. Indian Journal of Pure and Applied Mathematics. 30(5), 459-464.
  • Wilansky, A., 1964. Functıonal Analysis: New York, Blaisdell.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Oğuz Oğur 0000-0002-3206-5330

Yayımlanma Tarihi 15 Ekim 2020
Gönderilme Tarihi 4 Mayıs 2020
Kabul Tarihi 25 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 4

Kaynak Göster

APA Oğur, O. (2020). Modülüs Fonksiyonu ile Tanımlanmış Genelleştirilmiş Büyük Lebesgue Dizi Uzaylarının Topolojik Bazı Özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 1144-1149. https://doi.org/10.17714/gumusfenbil.732116