Araştırma Makalesi
BibTex RIS Kaynak Göster

Fuzzy inverse logic: part-1. introduction and bases

Yıl 2021, Cilt: 11 Sayı: 3, 675 - 691, 15.07.2021
https://doi.org/10.17714/gumusfenbil.894674

Öz

In almost all deterministic and artificial intelligence techniques, for the solution of the scientific problems such as design and control problems, the output estimations are performed depending on manuplations on the values of input variables. With the other words, lots of different values derived from input parameters are tried in order to obtain desired output(s). Contrary to these conventional estimation methods, this study consists of two parts in which a new artificial intelligence method called fuzzy inverse logic(FIL) is developed to determine or estimate the value of the input parameters that give the targeted problem output. In the first part of this study, after providing a brief overview about the method of classical fuzzy logic(FL), the solution approaches and calculation details about FIL are given. In the second part of the study, fuzzy inverse logic method was used to solve one simple mathematical problem and one simple civil engineering problem. After the validity of the developed method was demonstrated by graphics and tables. some evaluations were made about the method.

Kaynakça

  • Altaş, İ. H. (1999a). Bulanık Mantık: Bulanıklılık Kavramı. Enerji, Elektrik, Elektromekanik-3e,62, 80-85.
  • Altaş, İ. H. (1999b). Bulanık mantık: Bulanık denetim. Enerji, Elektrik, Elektromekanik-3e, 64(1999), 76-81.
  • Altaş, I. H. (2017). Fuzzy Logic Control in Energy Systems with Design Applications in MATLAB®/Simulink® (91). IET.
  • Chopard, B. and Droz, M. (1998). Cellular automata (Vol. 1). Berlin, Germany: Springer.
  • Cvijović, D. and Klinowski, J. (1995). Taboo search: an approach to the multiple minima problem. Science, 267 (5198), 664-666. https://doi.org/10.1126/science.267.5198.664
  • Erdun, H. (2020). Fuzzy Logic Defuzzification (Bulanıklaştırma) Methods with Examples: Erişim adresi https://www.researchgate.net/publication/344196954_Fuzzy_Logic_Defuzzification_Bulaniklastirma_Methods_with_Examples
  • Harris, J. (2005). Fuzzy logic applications in engineering science (Vol. 29). Springer Science & Business Media.
  • Jain, A. K., Mao, J. and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31-44. https://doi.org/10.1109/2.485891
  • Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, 4, 1942-1948.
  • Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics and computation, 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090
  • Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  • Mamdani, E. H. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8(6), 669-678. https://doi.org/10.1016/S0020-7373(76)80028-4
  • Moscato, P., Cotta, C. and Mendes, A. (2004). Memetic algorithms. In new optimization techniques in engineering (pp. 53-85). Springer, Berlin, Heidelberg.
  • Öztekin, E. ve Filiz, K. (2015). Beton gerilme şekildeğiştirme eğrilerinin bulanık mantık yaklaşımıyla elde edilmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, Bayburt.
  • Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions On Evolutionary Computation, 6(4), 321-332. https://doi.org/10.1109/TEVC.2002.802452
  • Pörge, B. (2019). Investigation of reliabilities of the triaxial concrete compressive strength models by fuzzy logic approach, Yüksek Lisans Tezi, Bayburt Üniversitesi Fen Bilimleri Enstitüsü, Bayburt.
  • Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508-5518.
  • Ross, T. J. (2004). Fuzzy logic with engineering applications (Vol. 2). New York: Wiley.
  • Terano, T., Asai, K. and Sugeno, M. (1992). Fuzzy systems theory and its applications. Academic Press Professional, Inc.
  • Tanaka, K. (1997). An introduction to fuzzy logic for practical applications.
  • Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated annealing. In simulated annealing: Theory and applications (pp. 7-15). Springer.
  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65-85. https://doi.org/10.1007/BF00175354
  • Yager, R. R. and Zadeh, L. A. (Eds.). (2012). An introduction to fuzzy logic applications in intelligent systems (Vol. 165). Springer Science & Business Media.
  • Yang, X. S. and Gandomi, A. H. (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483. https://doi.org/10.1108/02644401211235834
  • Zadeh, L. A. (1965). Information and control. Fuzzy Sets, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man and Cybernetics, (1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Siences, 9(1), 43-80. https://doi.org/10.1016/0020-0255(75)90036-5

Bulanık ters mantık: kısım-1. giriş ve temeller

Yıl 2021, Cilt: 11 Sayı: 3, 675 - 691, 15.07.2021
https://doi.org/10.17714/gumusfenbil.894674

Öz

Hemen hemen tüm analitik ve yapay zeka tekniklerinde, tasarım ve kontrol problemleri gibi bilimsel problemlerin çözümü için, arzu edilen sonucu elde edebilmek için girdi parametrelerinin değerleri üzerinde manuplasyonlar yapılır. Başka bir deyişle girdi parametrelerinin herbiri için birçok farklı değer arzu edilen problem sonucu elde edilene kadar kullanılan çözüm yöntemi üzerinde denenir. Bu alışılagelmiş tahmin yöntemlerinin tersine, hedeflenen problem çıktısını veren girdi parametrelerinin değerinin ne olması gerektiğini belirlemek veya tahmin etmek amacıyla bulanık ters mantık adıyla yeni bir yapay zeka yönteminin geliştirildiği bu çalışma iki kısımdan oluşmaktadır. İlk kısım olan bu makalede, klasik bulanık mantık hakkında kısa öz bilgi sunulduktan sonra, bulanık ters mantıktaki çözüm yaklaşımı ve hesaplama detayları verilmiştir. Çalışmanın ikinci kısmını oluşturan diğer makalede ise bir adet matematik problemi ve bir adet inşaat mühendisliği probleminin çözümü için bulanık ters mantık yöntemi kullanılmıştır. Geliştirilen yöntemin geçerliliği tablo ve grafiklerle ortaya konulduktan sonra yöntem hakkında bazı değerlendirmeler yapılmıştır.

Kaynakça

  • Altaş, İ. H. (1999a). Bulanık Mantık: Bulanıklılık Kavramı. Enerji, Elektrik, Elektromekanik-3e,62, 80-85.
  • Altaş, İ. H. (1999b). Bulanık mantık: Bulanık denetim. Enerji, Elektrik, Elektromekanik-3e, 64(1999), 76-81.
  • Altaş, I. H. (2017). Fuzzy Logic Control in Energy Systems with Design Applications in MATLAB®/Simulink® (91). IET.
  • Chopard, B. and Droz, M. (1998). Cellular automata (Vol. 1). Berlin, Germany: Springer.
  • Cvijović, D. and Klinowski, J. (1995). Taboo search: an approach to the multiple minima problem. Science, 267 (5198), 664-666. https://doi.org/10.1126/science.267.5198.664
  • Erdun, H. (2020). Fuzzy Logic Defuzzification (Bulanıklaştırma) Methods with Examples: Erişim adresi https://www.researchgate.net/publication/344196954_Fuzzy_Logic_Defuzzification_Bulaniklastirma_Methods_with_Examples
  • Harris, J. (2005). Fuzzy logic applications in engineering science (Vol. 29). Springer Science & Business Media.
  • Jain, A. K., Mao, J. and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31-44. https://doi.org/10.1109/2.485891
  • Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, 4, 1942-1948.
  • Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics and computation, 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090
  • Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  • Mamdani, E. H. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8(6), 669-678. https://doi.org/10.1016/S0020-7373(76)80028-4
  • Moscato, P., Cotta, C. and Mendes, A. (2004). Memetic algorithms. In new optimization techniques in engineering (pp. 53-85). Springer, Berlin, Heidelberg.
  • Öztekin, E. ve Filiz, K. (2015). Beton gerilme şekildeğiştirme eğrilerinin bulanık mantık yaklaşımıyla elde edilmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, Bayburt.
  • Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions On Evolutionary Computation, 6(4), 321-332. https://doi.org/10.1109/TEVC.2002.802452
  • Pörge, B. (2019). Investigation of reliabilities of the triaxial concrete compressive strength models by fuzzy logic approach, Yüksek Lisans Tezi, Bayburt Üniversitesi Fen Bilimleri Enstitüsü, Bayburt.
  • Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508-5518.
  • Ross, T. J. (2004). Fuzzy logic with engineering applications (Vol. 2). New York: Wiley.
  • Terano, T., Asai, K. and Sugeno, M. (1992). Fuzzy systems theory and its applications. Academic Press Professional, Inc.
  • Tanaka, K. (1997). An introduction to fuzzy logic for practical applications.
  • Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated annealing. In simulated annealing: Theory and applications (pp. 7-15). Springer.
  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65-85. https://doi.org/10.1007/BF00175354
  • Yager, R. R. and Zadeh, L. A. (Eds.). (2012). An introduction to fuzzy logic applications in intelligent systems (Vol. 165). Springer Science & Business Media.
  • Yang, X. S. and Gandomi, A. H. (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483. https://doi.org/10.1108/02644401211235834
  • Zadeh, L. A. (1965). Information and control. Fuzzy Sets, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man and Cybernetics, (1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Siences, 9(1), 43-80. https://doi.org/10.1016/0020-0255(75)90036-5
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ertekin Öztekin 0000-0002-4229-0953

Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 11 Mart 2021
Kabul Tarihi 13 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 3

Kaynak Göster

APA Öztekin, E. (2021). Fuzzy inverse logic: part-1. introduction and bases. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 675-691. https://doi.org/10.17714/gumusfenbil.894674