Araştırma Makalesi
BibTex RIS Kaynak Göster

Anti-Salkowski eğrisinin birim darboux vektöründen elde edilen smarandache eğrileri

Yıl 2021, Cilt: 11 Sayı: 4, 1304 - 1314, 15.10.2021
https://doi.org/10.17714/gumusfenbil.727025

Öz

Bu çalışmada, Sabban çatısına göre anti-Salkowski eğrisinin birim Darboux vektörlerinden elde edilen özel Smarandache eğrileri tanımlandı. Daha sonra her bir Smarandache eğrisinin Sabban çatısı oluşturuldu. Son olarak bu Smarandache eğrilerinin geodezik eğrilikleri hesaplandı ve her bir eğriye ait grafikler çizildi.

Destekleyen Kurum

yok

Proje Numarası

yok

Kaynakça

  • Fenchel, W. (1951). On the differential geometry of closed space curves. Bulletin of the American Mathematical Society, 57, 44–54.
  • Gür, S. and Şenyurt, S. (2010). Frenet vectors and geodesic curvatures of spherical indicators of Salkowski curve in E^3. Hadronic Journal, 33(5), 485.
  • Koenderink, J. (1990). Solid shape. MIT Press, ISBN 978-0-262-11139-3, 715 p.
  • Monterde, J. (2009). Salkowski curves revisited: a family of curves with constant curvature and non-constant torsion Computer Aided Geometric Design, 26, 271-278. https://doi.org/10.1016/j.cagd.2008.10.002
  • Sabuncuoğlu, A. (2006). Diferensiyel geometri. Nobel yayınları 258, ISBN 975-591-237- 1, Ankara – Türkiye, 440s.
  • Salkowski, E.L. (1909). Zur transformation von raumkurven. Mathematisch Annalen, 4(66), 517-557.
  • Şenyurt, S. and Öztürk, B. (2018). Smarandache curves of Salkowski curve according to Frenet frame. Turkish Journal of Mathematics and Computer Science, 10, 190-201.
  • Şenyurt, S. and Öztürk, B. (2018). Smarandache curves of anti-Salkowski curve according to Frenet frame. Proceedings of the International Conference on Mathematical Studies and Applications (ICMSA), October 2018, Karaman, Turkey, pp.132-143.
  • Uzun, M. and Şenyurt, S. (2020). Smarandache curves according to Sabban frame generated by the spherical indicatrix curves of the unit darboux vector of Salkowski curve. Journal of the Institute of Science and Technology, 10(3), 1966-1974. https://doi.org/10.21597/jist.703495

Smarandache curves of Anti-Salkowski curve according to the spherical indicatrix curve of the unit darboux vector

Yıl 2021, Cilt: 11 Sayı: 4, 1304 - 1314, 15.10.2021
https://doi.org/10.17714/gumusfenbil.727025

Öz

In this paper, we have defined special Smarandache curves according to Sabban frame formed by the unit Darboux vector of Anti-Salkowski curve. Next, the Sabban frame belonging to these curves have been constituted. Last, the geodesic curvatures of these Smarandache curves have been calculated and an example for each curve has been illustrated.

Proje Numarası

yok

Kaynakça

  • Fenchel, W. (1951). On the differential geometry of closed space curves. Bulletin of the American Mathematical Society, 57, 44–54.
  • Gür, S. and Şenyurt, S. (2010). Frenet vectors and geodesic curvatures of spherical indicators of Salkowski curve in E^3. Hadronic Journal, 33(5), 485.
  • Koenderink, J. (1990). Solid shape. MIT Press, ISBN 978-0-262-11139-3, 715 p.
  • Monterde, J. (2009). Salkowski curves revisited: a family of curves with constant curvature and non-constant torsion Computer Aided Geometric Design, 26, 271-278. https://doi.org/10.1016/j.cagd.2008.10.002
  • Sabuncuoğlu, A. (2006). Diferensiyel geometri. Nobel yayınları 258, ISBN 975-591-237- 1, Ankara – Türkiye, 440s.
  • Salkowski, E.L. (1909). Zur transformation von raumkurven. Mathematisch Annalen, 4(66), 517-557.
  • Şenyurt, S. and Öztürk, B. (2018). Smarandache curves of Salkowski curve according to Frenet frame. Turkish Journal of Mathematics and Computer Science, 10, 190-201.
  • Şenyurt, S. and Öztürk, B. (2018). Smarandache curves of anti-Salkowski curve according to Frenet frame. Proceedings of the International Conference on Mathematical Studies and Applications (ICMSA), October 2018, Karaman, Turkey, pp.132-143.
  • Uzun, M. and Şenyurt, S. (2020). Smarandache curves according to Sabban frame generated by the spherical indicatrix curves of the unit darboux vector of Salkowski curve. Journal of the Institute of Science and Technology, 10(3), 1966-1974. https://doi.org/10.21597/jist.703495
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Süleyman Şenyurt 0000-0003-1097-5541

Melek Uzun 0000-0002-1598-1345

Proje Numarası yok
Yayımlanma Tarihi 15 Ekim 2021
Gönderilme Tarihi 26 Nisan 2020
Kabul Tarihi 24 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 4

Kaynak Göster

APA Şenyurt, S., & Uzun, M. (2021). Smarandache curves of Anti-Salkowski curve according to the spherical indicatrix curve of the unit darboux vector. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1304-1314. https://doi.org/10.17714/gumusfenbil.727025