Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of natural radioactivity and radiological risks in baby powders

Yıl 2025, Cilt: 15 Sayı: 1, 161 - 169, 15.03.2025

Öz

All living things are constantly exposed to ionizing radiation emitted from natural and artificial radiation sources present in the world throughout their lives. Therefore, it is very important to determine the radioactivity levels of the products that people use and the environment they live in. In this context, 12 baby powder samples of different companies were obtained from local markets. The concentrations of 226Ra, 232Th and 40K in the powder samples were measured using a high purity germanium detector (HPGe). It was determined that 226Ra, 232Th and 40K radioisotope concentrations in the examined powder samples ranged between 2.31-12.71 Bq/kg, 1.26-13.68 Bq/kg and 4.69-38.21 Bq/kg, respectively. The average 226Ra, 232Th and 40K radioactivity concentrations in the powder samples were 5.11 ± 0.81 Bq/kg, 4.17 ± 0.59 Bq/kg and 17.30 ± 1.59 Bq/kg, respectively. To assess the radiological hazards from natural radioisotopes in the examined powder samples, the annual effective dose values (YED) was calculated and compared with the average values recommended by reputable international organizations. As a result, it was determined that the use of the examined powder samples would not pose a radiological risk.

Kaynakça

  • Ababneh, A.M. Jaradat, B., Samarah, Q.M. & Ababneh, Z.Q. (2021). Assessment of the radioactivity of gamma emitters in baby formula for different age groups and baby cereal consumed in Jordan. Radiation Protection Dosimetry, 193(1), 8-15. https://doi.org/10.1093/rpd/ncab015
  • Almugren, K. S., Sani, S. F. A., Azim, M. K. M., Ismail, N. N., Khandaker, M. U., Alsufyani, S. J., Alkallas, F. H., Almajid, H. F., Bradley, D. A., & Naseer, K. A. (2023). The presence of NORMs and toxic heavy metals in talcum baby powder. Journal of Radiation Research and Applied Sciences, 16(4), 100660. https://doi.org/10.1016/j.jrras.2023.100660
  • Apostoaei, A. L., & Kocher, D. C. (2010). Radiation Doses to Skin From Dermal Contamination. Defense Threat Reduction Agency, DTRA-TR-09, 1–223.
  • Azeem, U., Younis, H., ullah, N., Mehboob, K., Ajaz, M., Ali, M., Hidayat, A., & Muhammad, W. (2024). Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan. Nuclear Engineering and Technology, 56(1), 207–215. https://doi.org/10.1016/j.net.2023.09.026
  • Basaran, B., Dizman, S., & Turk, H. (2024). Radionuclides and metal levels of sea, lake, and rock salts and health risk assessment: Türkiye. Journal of Food Composition and Analysis, 134, 106514. https://doi.org/10.1016/j.jfca.2024.106514
  • Bukhari, I. H., Riaz, M., Rasool, N., Sattar, U., & Manzoor, H. S. (2013). Determination of Toxic Heavy Metals in Different Brands of Talcum Powder. International Journal of Applied and Natural Sciences (IJANS), 2(2), 45–52.
  • Coulibaly, A., Kpeglo, D. O., & Darko, E. O. (2023). Assessment of Radiological Hazards in Some Foods Products Consumed by the Malian Population Using Gamma Spectrometry. Journal of Radiation Protection and Research, 48(2), 84–89. https://doi.org/10.14407/jrpr.2022.00178
  • Cruz da Silva, R., Lopes, J. M., Barbosa da Silva, L., Domingues, A. M., da Silva Pinheiro, C., Faria da Silva, L., & Xavier da Silva, A. (2020). Radiological evaluation of Ra-226, Ra-228 and K-40 in tea samples: A comparative study of effective dose and cancer risk. Applied Radiation and Isotopes, 165, 109326. https://doi.org/10.1016/j.apradiso.2020.109326
  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry, 40(3), 586–593. https://doi.org/10.1021/ac60259a007
  • Dizman, S., Akdemir, T., Yeşilkanat, C. M., Nevruzoglu, V., Bal, E., & Keser, R. (2024). Investigation and mapping of natural and artificial radioactivity in sediment samples from Borçka Black Lake, Artvin-Turkey. International Journal of Environmental Analytical Chemistry, 104(9), 2165–2179. https://doi.org/10.1080/03067319.2022.2060084
  • Dizman, S., Hodolli, G., Kadiri, S., Aliu, H., & Makolli, S. (2020). Radioactivity in Kosovo honey samples. Polish Journal of Environmental Studies, 29(2), 1119–1127. https://doi.org/10.15244/pjoes/105968
  • Gözen, D., Çağlar, S., & Doğan, Z. (2011). 0-24 Ay arası bebeği olan annelerin pişiği önleme ve bakımına yönelik uygulamaları. Florence Nightingale Journal of Nursing, 19(1), 17–22.
  • Grigorescu, E. L., Sahagia, M., Razdolescu, A. C., Luca, A., & Ivan, C. (2002). Standardization of Eu-152. Applied Radiation and Isotopes, 56, 435–439.
  • Güler, S., Avcı, S., Yiğit, F., & Ortabağ, T. (2016). 0-12 Aylık Bebeği Olan Annelerin Bebek Bakımında Başvurdukları Geleneksel Uygulamalar ve Tutumlarının Belirlenmesi. KASHED, 4(1), 35–50.
  • IAEA. (2010). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments. International Atomic Energy Agency, Vienna, Technical Report Series No. 472.
  • ICRP. (2007). Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection, Ann. ICRP(2-4).
  • Khandaker, M. U., Nasir, N. L. M., Zakirin, N. S., Kassim, H. A., Asaduzzaman, K., Bradley, D. A., Zulkifli, M. Y., & Hayyan, A. (2017). Radiation dose to the Malaysian populace via the consumption of bottled mineral water. Radiation Physics and Chemistry, 140, 173–179. https://doi.org/10.1016/j.radphyschem.2017.01.018
  • Moon, M. C., Park, J. D., Choi, B. S., Park, S. Y., Kim, D. W., Chung, Y. H., Hisanaga, N., & Yu, I. J. (2011). Risk assessment of baby powder exposure through inhalation. Toxicological Research, 27(3), 137–141. https://doi.org/10.5487/TR.2011.27.3.137
  • Nnorom, I. C. (2011). Trace metals in cosmetic facial talcum powders marketed in Nigeria. Toxicological and Environmental Chemistry, 93(6), 1135–1148. https://doi.org/10.1080/02772248.2011.577075
  • Okedeyi, S.A., Ikuemonisan, F.E., Olajuwon, O.O., Atilade, A.O., Mustapha, A.O. Coker, J.O., Kayode, Y.O. Ajose, A.S., Kasika, F.A. & Odubote, B.O. (2024). Assessment of natural radioactivity levels of 40K, 226Ra and 232Th in some selected baby food in southwestern Nigeria. Caliphate Journal of Science & Technology, 2, 175-183. https://dx.doi.org/10.4314/cajost.v6i2.6
  • Ong, J.X., Gan, P., Lee, K.K.M., Wu, Y. & Chan, J.S.H. (2024). An assessment of natural and artifical radionuclide content in powdered milk consumed by infants and toddlers in Singapore. Journal of Radioanalytical and Nuclear Chemistry, 333, 951–959. https://doi.org/10.1007/s10967-023-09331-3
  • Özden, S., Pehlivanoğlu, S. A., & Günay, O. (2023). Evaluation of natural radioactivity in soils of Konya (Turkey) and estimation of radiological health hazards. Environmental Monitoring and Assessment, 195(12), 1–13. https://doi.org/10.1007/s10661-023-12162-0
  • Siraz, M. M. M., Das, S. K., Mondol, M. S., Alam, M. S., Al Mahmud, J., Rashid, M. B., Khandaker, M. U., & Yeasmin, S. (2023). Evaluation of transfer factors of 226Ra, 232Th, and 40K radionuclides from soil to grass and mango in the northern region of Bangladesh. Environmental Monitoring and Assessment, 195(5), 579. https://doi.org/10.1007/s10661-023-11223-8
  • Skoko, B., Košiček, K.M., Ilievski, T., Karanović, G., Grahek, Z., Coha, I., Pavičić-Hamer, D. & Tucaković, I. (2024). Radionuclides determination by alpha (210Po, 228,230,232Th) and gamma (226,228Ra, 137Cs, 40K) spectrometry in children's food in Croatia with assessment of cumulative ingestion dose for infants. Journal of Food Composition and Analysis, 136, 106828. https://doi.org/10.1016/j.jfca.2024.106828
  • UNSCEAR. (2000). Exposures from natural radiation sources. United Nations Scientific Committee on The Effects of Atomic Radiation Sources, Annex B, 140.
  • URL. (2024). Information on the IAEA 375 Reference sample. https://analytical-reference-materials.iaea.org/iaea-375
  • Wudke, H., Brown, K., Murchland, M., Gillis, M., Gokey, K., Bank, J., Lytle, M., McLeod, C. L., & Krekeler, M. P. S. (2024). Mineralogical and geochemical characterization of Johnson’s baby powder from 1985: Evidence of contamination. Applied Clay Science, 250, 107252. https://doi.org/10.1016/j.clay.2023.107252
  • Zare, M. R., Kamali, M., Omidi, Z., Khorambagheri, M., Mortazavi, M. S., Ebrahimi, M., & Akbarzadeh, G. (2015). Evaluation of natural radioactivity content in high-volume surface water samples along the northern coast of Oman Sea using portable high-resolution gamma-ray spectrometry. Journal of Environmental Radioactivity, 144, 134–139. https://doi.org/10.1016/j.jenvrad.2015.03.003

Bebek pudralarında doğal radyoaktivite ve radyolojik risklerin değerlendirilmesi

Yıl 2025, Cilt: 15 Sayı: 1, 161 - 169, 15.03.2025

Öz

Tüm canlılar yaşamları boyunca sürekli olarak dünyada mevcut olan doğal ve yapay radyasyon kaynaklarından yayımlanan iyonlaştırıcı radyasyona maruz kalmaktadır. Bu nedenle, özellikle insanların kullandıkları ürünler ve yaşadıkları çevrenin radyoaktivite seviyelerinin belirlenmesi oldukça önemlidir. Bu kapsamda, yerel marketlerden satışa hazır farklı firmalara ait 12 adet bebek pudrası örneği temin edildi. Pudra örneklerinde 226Ra, 232Th ve 40K konsantrasyonları yüksek saflıkta germanyum detektörü (HPGe) kullanılarak ölçüldü. İncelenen pudra örneklerinde 226Ra, 232Th ve 40K radyoizotop konsantrasyonlarının sırasıyla 2.31-12.71 Bq/kg, 1.26-13.68 Bq/kg ve 4.69-38.21 Bq/kg aralığında değiştiği belirlendi. Pudra örneklerinde ortalama 226Ra, 232Th ve 40K radyoaktivite konsantrasyonları sırasıyla 5.11 ± 0.81 Bq/kg, 4.17 ± 0.59 Bq/kg ve 17.30 ± 1.59 Bq/kg olarak bulundu. İncelenen pudra örneklerindeki doğal radyoizotoplardan kaynaklanan radyolojik tehlikeleri değerlendirmek için yıllık etkin doz değerleri (YED) hesaplandı ve saygın uluslararası kuruluşlar tarafından önerilen ortalama değerlerle kıyaslandı. Sonuç olarak, incelenen pudra örneklerinin kullanılmasının radyolojik olarak bir risk oluşturmayacağı belirlendi.

Kaynakça

  • Ababneh, A.M. Jaradat, B., Samarah, Q.M. & Ababneh, Z.Q. (2021). Assessment of the radioactivity of gamma emitters in baby formula for different age groups and baby cereal consumed in Jordan. Radiation Protection Dosimetry, 193(1), 8-15. https://doi.org/10.1093/rpd/ncab015
  • Almugren, K. S., Sani, S. F. A., Azim, M. K. M., Ismail, N. N., Khandaker, M. U., Alsufyani, S. J., Alkallas, F. H., Almajid, H. F., Bradley, D. A., & Naseer, K. A. (2023). The presence of NORMs and toxic heavy metals in talcum baby powder. Journal of Radiation Research and Applied Sciences, 16(4), 100660. https://doi.org/10.1016/j.jrras.2023.100660
  • Apostoaei, A. L., & Kocher, D. C. (2010). Radiation Doses to Skin From Dermal Contamination. Defense Threat Reduction Agency, DTRA-TR-09, 1–223.
  • Azeem, U., Younis, H., ullah, N., Mehboob, K., Ajaz, M., Ali, M., Hidayat, A., & Muhammad, W. (2024). Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan. Nuclear Engineering and Technology, 56(1), 207–215. https://doi.org/10.1016/j.net.2023.09.026
  • Basaran, B., Dizman, S., & Turk, H. (2024). Radionuclides and metal levels of sea, lake, and rock salts and health risk assessment: Türkiye. Journal of Food Composition and Analysis, 134, 106514. https://doi.org/10.1016/j.jfca.2024.106514
  • Bukhari, I. H., Riaz, M., Rasool, N., Sattar, U., & Manzoor, H. S. (2013). Determination of Toxic Heavy Metals in Different Brands of Talcum Powder. International Journal of Applied and Natural Sciences (IJANS), 2(2), 45–52.
  • Coulibaly, A., Kpeglo, D. O., & Darko, E. O. (2023). Assessment of Radiological Hazards in Some Foods Products Consumed by the Malian Population Using Gamma Spectrometry. Journal of Radiation Protection and Research, 48(2), 84–89. https://doi.org/10.14407/jrpr.2022.00178
  • Cruz da Silva, R., Lopes, J. M., Barbosa da Silva, L., Domingues, A. M., da Silva Pinheiro, C., Faria da Silva, L., & Xavier da Silva, A. (2020). Radiological evaluation of Ra-226, Ra-228 and K-40 in tea samples: A comparative study of effective dose and cancer risk. Applied Radiation and Isotopes, 165, 109326. https://doi.org/10.1016/j.apradiso.2020.109326
  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry, 40(3), 586–593. https://doi.org/10.1021/ac60259a007
  • Dizman, S., Akdemir, T., Yeşilkanat, C. M., Nevruzoglu, V., Bal, E., & Keser, R. (2024). Investigation and mapping of natural and artificial radioactivity in sediment samples from Borçka Black Lake, Artvin-Turkey. International Journal of Environmental Analytical Chemistry, 104(9), 2165–2179. https://doi.org/10.1080/03067319.2022.2060084
  • Dizman, S., Hodolli, G., Kadiri, S., Aliu, H., & Makolli, S. (2020). Radioactivity in Kosovo honey samples. Polish Journal of Environmental Studies, 29(2), 1119–1127. https://doi.org/10.15244/pjoes/105968
  • Gözen, D., Çağlar, S., & Doğan, Z. (2011). 0-24 Ay arası bebeği olan annelerin pişiği önleme ve bakımına yönelik uygulamaları. Florence Nightingale Journal of Nursing, 19(1), 17–22.
  • Grigorescu, E. L., Sahagia, M., Razdolescu, A. C., Luca, A., & Ivan, C. (2002). Standardization of Eu-152. Applied Radiation and Isotopes, 56, 435–439.
  • Güler, S., Avcı, S., Yiğit, F., & Ortabağ, T. (2016). 0-12 Aylık Bebeği Olan Annelerin Bebek Bakımında Başvurdukları Geleneksel Uygulamalar ve Tutumlarının Belirlenmesi. KASHED, 4(1), 35–50.
  • IAEA. (2010). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments. International Atomic Energy Agency, Vienna, Technical Report Series No. 472.
  • ICRP. (2007). Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection, Ann. ICRP(2-4).
  • Khandaker, M. U., Nasir, N. L. M., Zakirin, N. S., Kassim, H. A., Asaduzzaman, K., Bradley, D. A., Zulkifli, M. Y., & Hayyan, A. (2017). Radiation dose to the Malaysian populace via the consumption of bottled mineral water. Radiation Physics and Chemistry, 140, 173–179. https://doi.org/10.1016/j.radphyschem.2017.01.018
  • Moon, M. C., Park, J. D., Choi, B. S., Park, S. Y., Kim, D. W., Chung, Y. H., Hisanaga, N., & Yu, I. J. (2011). Risk assessment of baby powder exposure through inhalation. Toxicological Research, 27(3), 137–141. https://doi.org/10.5487/TR.2011.27.3.137
  • Nnorom, I. C. (2011). Trace metals in cosmetic facial talcum powders marketed in Nigeria. Toxicological and Environmental Chemistry, 93(6), 1135–1148. https://doi.org/10.1080/02772248.2011.577075
  • Okedeyi, S.A., Ikuemonisan, F.E., Olajuwon, O.O., Atilade, A.O., Mustapha, A.O. Coker, J.O., Kayode, Y.O. Ajose, A.S., Kasika, F.A. & Odubote, B.O. (2024). Assessment of natural radioactivity levels of 40K, 226Ra and 232Th in some selected baby food in southwestern Nigeria. Caliphate Journal of Science & Technology, 2, 175-183. https://dx.doi.org/10.4314/cajost.v6i2.6
  • Ong, J.X., Gan, P., Lee, K.K.M., Wu, Y. & Chan, J.S.H. (2024). An assessment of natural and artifical radionuclide content in powdered milk consumed by infants and toddlers in Singapore. Journal of Radioanalytical and Nuclear Chemistry, 333, 951–959. https://doi.org/10.1007/s10967-023-09331-3
  • Özden, S., Pehlivanoğlu, S. A., & Günay, O. (2023). Evaluation of natural radioactivity in soils of Konya (Turkey) and estimation of radiological health hazards. Environmental Monitoring and Assessment, 195(12), 1–13. https://doi.org/10.1007/s10661-023-12162-0
  • Siraz, M. M. M., Das, S. K., Mondol, M. S., Alam, M. S., Al Mahmud, J., Rashid, M. B., Khandaker, M. U., & Yeasmin, S. (2023). Evaluation of transfer factors of 226Ra, 232Th, and 40K radionuclides from soil to grass and mango in the northern region of Bangladesh. Environmental Monitoring and Assessment, 195(5), 579. https://doi.org/10.1007/s10661-023-11223-8
  • Skoko, B., Košiček, K.M., Ilievski, T., Karanović, G., Grahek, Z., Coha, I., Pavičić-Hamer, D. & Tucaković, I. (2024). Radionuclides determination by alpha (210Po, 228,230,232Th) and gamma (226,228Ra, 137Cs, 40K) spectrometry in children's food in Croatia with assessment of cumulative ingestion dose for infants. Journal of Food Composition and Analysis, 136, 106828. https://doi.org/10.1016/j.jfca.2024.106828
  • UNSCEAR. (2000). Exposures from natural radiation sources. United Nations Scientific Committee on The Effects of Atomic Radiation Sources, Annex B, 140.
  • URL. (2024). Information on the IAEA 375 Reference sample. https://analytical-reference-materials.iaea.org/iaea-375
  • Wudke, H., Brown, K., Murchland, M., Gillis, M., Gokey, K., Bank, J., Lytle, M., McLeod, C. L., & Krekeler, M. P. S. (2024). Mineralogical and geochemical characterization of Johnson’s baby powder from 1985: Evidence of contamination. Applied Clay Science, 250, 107252. https://doi.org/10.1016/j.clay.2023.107252
  • Zare, M. R., Kamali, M., Omidi, Z., Khorambagheri, M., Mortazavi, M. S., Ebrahimi, M., & Akbarzadeh, G. (2015). Evaluation of natural radioactivity content in high-volume surface water samples along the northern coast of Oman Sea using portable high-resolution gamma-ray spectrometry. Journal of Environmental Radioactivity, 144, 134–139. https://doi.org/10.1016/j.jenvrad.2015.03.003
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nükleer Fizik
Bölüm Makaleler
Yazarlar

Serdar Dizman 0000-0002-6511-9526

Kübra Camgöz 0009-0003-9834-4580

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 13 Eylül 2024
Kabul Tarihi 19 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Dizman, S., & Camgöz, K. (2025). Bebek pudralarında doğal radyoaktivite ve radyolojik risklerin değerlendirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 161-169. https://doi.org/10.17714/gumusfenbil.1549384