Araştırma Makalesi
BibTex RIS Kaynak Göster

Adveksiyon ve reaksiyon terimlerinin varlığında uyumlu kesirli Cahn-Hilliard denkleminin yeni hibrit yöntemle yeni sayısal çözümleri

Yıl 2025, Cilt: 15 Sayı: 1, 274 - 285, 15.03.2025

Öz

Bu makalede, uyumlu kesirli Cahn-Hilliard denklemini analiz etmek için yeni sayısal yöntem kullanılmıştır. Cahn-Hilliard denklemi, matematiksel fizikte, özellikle çoklu fazlı sistemlerde spinodal ayrışma gibi faz ayırma olaylarını anlamak için önemli bir araç olarak kullanılan matematiksel bir modeldir. Bu çalışma, önerilen gelecekteki şemanın yakınsaklığını ve hatasını araştırmaktadır. Önerilen teknik, seri çözümünün yakınsama aralığını gösteren h-eğrileri üretir. Bu tekniğin etkinliğini ve uygunluğunu belirlemek için hata analizi gerçekleştirilmiştir. Ayrıca, çözümlerin 2B ve 3B grafikleri çizilmiştir. Ek olarak, grafiklerin davranışı yorumlanmıştır. Bu tekniğin basit, etkili ve hızlı olduğu gösterilmiştir.

Kaynakça

  • Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  • Akinyemi, L. (2020). A fractional analysis of Noyes–Field model for the nonlinear Belousov–Zhabotinsky reaction. Computational and Applied Mathematics, 39(3), 175. https://doi.org/10.1007/s40314-020-01212-9
  • Akinyemi, L., Iyiola, O. S., & Akpan, U. (2020). Iterative methods for solving fourth‐and sixth‐order time‐fractional Cahn‐Hillard equation. Mathematical Methods in the Applied Sciences, 43(7), 4050-4074. https://doi.org/10.1002/mma.6173
  • Alkan, A. (2022). Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 4(2), 117-134. https://doi.org/10.55213/kmujens.1206517
  • Alkan, A. (2024). Analysis of Fractional Advection Equation with Improved Homotopy Analysis Method. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(3), 1215-1229. https://doi.org/10.47495/okufbed.1387630
  • Alkan, A., & Anaç, H. (2024). The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 9(9), 25333-25359. https://doi.org/10.3934/math.20241237
  • Avit, Ö., & Anaç, H. (2024). The Novel Conformable Methods to Solve Conformable Time-Fractional Coupled Jaulent-Miodek System. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 25(1), 123-140. https://doi.org/10.18038/estubtda.1380255
  • Baleanu, D., Wu, G. C., & Zeng, S. D. (2017). Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos, Solitons & Fractals, 102, 99-105. https://doi.org/10.1016/j.chaos.2017.02.007
  • Baleanu, D., Diethelm, K., Scalas, E. & Trujillo, J. J. (2012). Fractional Calculus: Models and Numerical Methods. World Scientific.
  • Benattıa, M. E., & Belghaba, K. (2021). Shehu conformable fractional transform, theories and applications. Cankaya University Journal of Science and Engineering, 18(1), 24-32.
  • Bouhassoun, A., & Hamdi Cherif, M. (2015). Homotopy perturbation method for solving the fractional Cahn-Hilliard equation. Journal of Interdisciplinary Mathematics, 18(5), 513-524. https://doi.org/10.1080/10288457.2013.867627
  • Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 28(2), 258-267. https://doi.org/10.1063/1.1744102
  • Das, S. (2009). Analytical solution of a fractional diffusion equation by variational iteration method. Computers & Mathematics with Applications, 57(3), 483-487. https://doi.org/10.1016/j.camwa.2008.09.045
  • Erol, A. S., Anaç, H., & Olgun, A. (2023). Numerical solutions of conformable time-fractional Swift-Hohenberg equation with proportional delay by the novel methods. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 5(1), 1-24. https://doi.org/10.55213/kmujens.1221889
  • Esen, A., Sulaiman, T. A., Bulut, H., & Baskonus, H. M. (2018). Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik, 167, 150-156. https://doi.org/10.1016/j.ijleo.2018.04.015
  • Gao, F., & Chi, C. (2020). Improvement on conformable fractional derivative and its applications in fractional differential equations. Journal of Function Spaces, 2020(1), 5852414. https://doi.org/10.1155/2020/5852414
  • He, J. H. (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167(1-2), 57-68. https://doi.org/10.1016/S0045-7825(98)00108-X
  • He, J. H. (1999). Homotopy perturbation technique. Computer methods in applied mechanics and engineering, 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  • He, J. H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied and Mathematics Computation, 135(1), 73-79. https://doi.org/10.1016/S0096-3003(01)00312-5
  • Hussain, S., Shah, A., Ullah, A., & Haq, F. (2022). The q-homotopy analysis method for a solution of the Cahn–Hilliard equation in the presence of advection and reaction terms. Journal of Taibah University for Science, 16(1), 813-819. https://doi.org/10.1080/16583655.2022.2119746
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of computational and applied mathematics, 264, 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • Kurt, A., Rezazadeh, H., Senol, M., Neirameh, A., Tasbozan, O., Eslami, M., & Mirzazadeh, M. (2019). Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves. Journal of Ocean Engineering and Science, 4(1), 24-32. https://doi.org/10.1016/j.joes.2018.12.004
  • Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied mathematics and computation, 147(2), 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7
  • Merdan, M., Anaç, H., Bekiryazıcı, Z., & Kesemen, T. (2019). Solving of Some Random Partial Differential Equations by Using Differential Transformation Method and Laplace-Padé Method. Gümüshane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 108-118. https://doi.org/10.17714/gumusfenbil.404332
  • Miller, K. S., & Ross, B. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations. John Willey & Sons.
  • Ray, S. S., & Bera, R. K. (2006). Analytical solution of a fractional diffusion equation by Adomian decomposition method. Applied Mathematics and Computation, 174(1), 329-336. https://doi.org/10.1016/j.amc.2005.04.082
  • Shah, A., & Siddiqui, A. A. (2012). Variational iteration method for the solution of viscous Cahn-Hilliard equation. World Applied Sciences Journal, 16(11), 1589-1592.
  • Şenol, M., Iyiola, O. S., Daei Kasmaei, H., & Akinyemi, L. (2019). Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential. Advances in Difference Equations, 2019(1), 1-21. https://doi.org/10.1186/s13662-019-2397-5
  • Tripathi, N. K., Das, S., Ong, S. H., Jafari, H., & Al Qurashi, M. M. (2017). Solution of time-fractional Cahn–Hilliard equation with reaction term using homotopy analysis method. Advances in Mechanical Engineering, 9(12), 1687814017740773. https://doi.org/10.1177/1687814017740773
  • Ugurlu, Y., & Kaya, D. (2008). Solutions of the Cahn–Hilliard equation. Computers & Mathematics with Applications, 56(12), 3038-3045. https://doi.org/10.1016/j.camwa.2008.07.007
  • Veeresha, P., Prakasha, D. G., & Baskonus, H. M. (2019). Novel simulations to the time-fractional Fisher’s equation. Mathematical Sciences, 13(1), 33-42. https://doi.org/10.1007/s40096-019-0276-6
  • Wazwaz, A. M., & Gorguis, A. (2004). An analytic study of Fisher's equation by using Adomian decomposition method. Applied Mathematics and Computation, 154(3), 609-620. https://doi.org/10.1016/S0096-3003(03)00738-0

The novel numerical solutions of conformable fractional Cahn-Hilliard equation in the presence of advection and reaction terms via the novel hybrid method

Yıl 2025, Cilt: 15 Sayı: 1, 274 - 285, 15.03.2025

Öz

In this paper, the novel numerical method is used to analyze the conformable fractional Cahn-Hilliard equation. The Cahn-Hilliard equation is a mathematical model employed as a crucial tool in mathematical physics, specifically for understanding phase separation phenomena such as spinodal decomposition in systems with multiple phases. This study investigates the convergence and error of the proposed future scheme. The proposed technique produces h-curves that show the series solution's convergence interval. To ascertain the efficacy and appropriateness of this technique, the error analysis has been conducted. Also, 2D and 3D graphs of the solutions were drawn. Additionally, the behavior of the graphs was commented. This technique has been shown to be simple, effective and fast.

Kaynakça

  • Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  • Akinyemi, L. (2020). A fractional analysis of Noyes–Field model for the nonlinear Belousov–Zhabotinsky reaction. Computational and Applied Mathematics, 39(3), 175. https://doi.org/10.1007/s40314-020-01212-9
  • Akinyemi, L., Iyiola, O. S., & Akpan, U. (2020). Iterative methods for solving fourth‐and sixth‐order time‐fractional Cahn‐Hillard equation. Mathematical Methods in the Applied Sciences, 43(7), 4050-4074. https://doi.org/10.1002/mma.6173
  • Alkan, A. (2022). Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 4(2), 117-134. https://doi.org/10.55213/kmujens.1206517
  • Alkan, A. (2024). Analysis of Fractional Advection Equation with Improved Homotopy Analysis Method. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(3), 1215-1229. https://doi.org/10.47495/okufbed.1387630
  • Alkan, A., & Anaç, H. (2024). The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 9(9), 25333-25359. https://doi.org/10.3934/math.20241237
  • Avit, Ö., & Anaç, H. (2024). The Novel Conformable Methods to Solve Conformable Time-Fractional Coupled Jaulent-Miodek System. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 25(1), 123-140. https://doi.org/10.18038/estubtda.1380255
  • Baleanu, D., Wu, G. C., & Zeng, S. D. (2017). Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos, Solitons & Fractals, 102, 99-105. https://doi.org/10.1016/j.chaos.2017.02.007
  • Baleanu, D., Diethelm, K., Scalas, E. & Trujillo, J. J. (2012). Fractional Calculus: Models and Numerical Methods. World Scientific.
  • Benattıa, M. E., & Belghaba, K. (2021). Shehu conformable fractional transform, theories and applications. Cankaya University Journal of Science and Engineering, 18(1), 24-32.
  • Bouhassoun, A., & Hamdi Cherif, M. (2015). Homotopy perturbation method for solving the fractional Cahn-Hilliard equation. Journal of Interdisciplinary Mathematics, 18(5), 513-524. https://doi.org/10.1080/10288457.2013.867627
  • Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 28(2), 258-267. https://doi.org/10.1063/1.1744102
  • Das, S. (2009). Analytical solution of a fractional diffusion equation by variational iteration method. Computers & Mathematics with Applications, 57(3), 483-487. https://doi.org/10.1016/j.camwa.2008.09.045
  • Erol, A. S., Anaç, H., & Olgun, A. (2023). Numerical solutions of conformable time-fractional Swift-Hohenberg equation with proportional delay by the novel methods. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 5(1), 1-24. https://doi.org/10.55213/kmujens.1221889
  • Esen, A., Sulaiman, T. A., Bulut, H., & Baskonus, H. M. (2018). Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik, 167, 150-156. https://doi.org/10.1016/j.ijleo.2018.04.015
  • Gao, F., & Chi, C. (2020). Improvement on conformable fractional derivative and its applications in fractional differential equations. Journal of Function Spaces, 2020(1), 5852414. https://doi.org/10.1155/2020/5852414
  • He, J. H. (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167(1-2), 57-68. https://doi.org/10.1016/S0045-7825(98)00108-X
  • He, J. H. (1999). Homotopy perturbation technique. Computer methods in applied mechanics and engineering, 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  • He, J. H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied and Mathematics Computation, 135(1), 73-79. https://doi.org/10.1016/S0096-3003(01)00312-5
  • Hussain, S., Shah, A., Ullah, A., & Haq, F. (2022). The q-homotopy analysis method for a solution of the Cahn–Hilliard equation in the presence of advection and reaction terms. Journal of Taibah University for Science, 16(1), 813-819. https://doi.org/10.1080/16583655.2022.2119746
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of computational and applied mathematics, 264, 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • Kurt, A., Rezazadeh, H., Senol, M., Neirameh, A., Tasbozan, O., Eslami, M., & Mirzazadeh, M. (2019). Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves. Journal of Ocean Engineering and Science, 4(1), 24-32. https://doi.org/10.1016/j.joes.2018.12.004
  • Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied mathematics and computation, 147(2), 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7
  • Merdan, M., Anaç, H., Bekiryazıcı, Z., & Kesemen, T. (2019). Solving of Some Random Partial Differential Equations by Using Differential Transformation Method and Laplace-Padé Method. Gümüshane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 108-118. https://doi.org/10.17714/gumusfenbil.404332
  • Miller, K. S., & Ross, B. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations. John Willey & Sons.
  • Ray, S. S., & Bera, R. K. (2006). Analytical solution of a fractional diffusion equation by Adomian decomposition method. Applied Mathematics and Computation, 174(1), 329-336. https://doi.org/10.1016/j.amc.2005.04.082
  • Shah, A., & Siddiqui, A. A. (2012). Variational iteration method for the solution of viscous Cahn-Hilliard equation. World Applied Sciences Journal, 16(11), 1589-1592.
  • Şenol, M., Iyiola, O. S., Daei Kasmaei, H., & Akinyemi, L. (2019). Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential. Advances in Difference Equations, 2019(1), 1-21. https://doi.org/10.1186/s13662-019-2397-5
  • Tripathi, N. K., Das, S., Ong, S. H., Jafari, H., & Al Qurashi, M. M. (2017). Solution of time-fractional Cahn–Hilliard equation with reaction term using homotopy analysis method. Advances in Mechanical Engineering, 9(12), 1687814017740773. https://doi.org/10.1177/1687814017740773
  • Ugurlu, Y., & Kaya, D. (2008). Solutions of the Cahn–Hilliard equation. Computers & Mathematics with Applications, 56(12), 3038-3045. https://doi.org/10.1016/j.camwa.2008.07.007
  • Veeresha, P., Prakasha, D. G., & Baskonus, H. M. (2019). Novel simulations to the time-fractional Fisher’s equation. Mathematical Sciences, 13(1), 33-42. https://doi.org/10.1007/s40096-019-0276-6
  • Wazwaz, A. M., & Gorguis, A. (2004). An analytic study of Fisher's equation by using Adomian decomposition method. Applied Mathematics and Computation, 154(3), 609-620. https://doi.org/10.1016/S0096-3003(03)00738-0
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diferansiyel ve İntegral Denklemlerin Sayısal Çözümü
Bölüm Makaleler
Yazarlar

Aslı Alkan 0000-0002-1036-7178

Hasan Bulut 0000-0002-6089-1517

Tolga Aktürk 0000-0002-3948-6357

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 15 Ekim 2024
Kabul Tarihi 6 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Alkan, A., Bulut, H., & Aktürk, T. (2025). The novel numerical solutions of conformable fractional Cahn-Hilliard equation in the presence of advection and reaction terms via the novel hybrid method. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 274-285. https://doi.org/10.17714/gumusfenbil.1568128