Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of protein level, amino acid profile and cytotoxic effects of plant-based proteins and meat analogues

Yıl 2025, Cilt: 15 Sayı: 2, 474 - 485, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1595279

Öz

According to the Nova food classification system, plant proteins containing vegan analogues are classified into processed and ultra-processed. The recent sectoral developments highlight the importance of nutritional assessments of plant proteins and vegan analogues. This study investigated the protein level, essential (EAA)- and non-essential (non-EAA) amino acid profiles, and cytotoxic effects of plant-based proteins and meat analogues. Therefore, four meat products (burger meatball, pastırma, stuffed meatball, and sausage), soy and pea proteins, and four meat analogues were purchased from retail markets. All samples were subjected to the Kjeldahl test for protein content (%), LC-MS/MS test for EAA- and non-EAA profiles, and MTS assay for their cytotoxic effects. The results showed that the protein contents of soy protein, pea protein, meat analogues, and animal-origin meat products were determined to be 60.9%, 81.8%, 18.5 ± 9.3%, and 18.1 ± 9.7%, respectively. The EAA to non-EAA ratio in the meat analogues and meat products was 29.2/70.8 and 27.9/72.1, respectively. Besides, the MTS test indicated that the cell viability of HCT-116 cells at 24th and 48th h in the sausage analogues was significantly reduced by 59.84 ± 1.84%. In contrast, in pastırma and beef stuffed meatball analogues at 48th h, it was significantly decreased by 57.34 ± 0.52% and 62.70 ± 0.79%, respectively (p<0.05). Overall, we concluded that the health effects of processed and ultra-processed plant-based proteins and meat analogues on human health need further investigation through bioavailability and molecular-based techniques.

Kaynakça

  • Aaslyng, M. D., Dám, A., Petersen, I. L., & Christoffersen, T. (2023). Protein content and amino acid composition in the diet of Danish vegans: a cross-sectional study. BMC Nutrition, 9(1), 131.https://doi.org/10.1186/s40795-023-00793-y
  • Abdik, H. (2022). Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Molecular Biology Reports,49(4), 2963-2971. https://doi.org/10.1007/s11033-022-07117-6
  • Andreani, F., Lin, Z., & Haider, A. (2023). The plant-based food market: Recent innovations and consumer trends. Food Business Review, 28(1), 37-50.https://doi.org/10.3390/nu15020452
  • Helrich, K. (1990). Official methods of analysis of AOAC (15th Ed.). Association of Official Analytical Chemists. Rockville, USA.
  • Bakhsh, A., Lee, S. J., Lee, E. Y., Sabikun, N., Hwang, Y. H., & Joo, S. T. (2021). A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods, 10(3), 560.https://doi.org/10.3390/foods10030560
  • Banach, M., Witkowska, N., & Nowak, M. (2022). Alternative proteins and their impact on human health and sustainability. Journal of Clinical Medicine, 11(4), 872-889.https://doi.org/10.1080/10408398.2022.2089625
  • Boukid, F. (2021). Plant-based meat analogues: From niche to mainstream. European food research and technology, 247(2), 297-308.https://doi.org/10.1007/s00217-020-03630-9
  • Cheng, M. vd. (2022). Climate change and livestock production: A literature review. Atmosphere13(1), 140. https://doi.org/10.3390/atmos13010140
  • Corrêa, P. F., Da Silva, C. F., Ferreira, J. P., & Guerra, J. M. C. (2023). Vegetable-based frankfurter sausage production by different emulsion gels and assessment of physical-chemical, microbiological and nutritional properties. Food Chemistry Advances, 3, 100354. https://doi.org/10.1016/j.focha.2023.100354
  • Crimarco, A., Landry, M. J., Carter, M. M., & Gardner, C. D. (2022). Assessing the effects of alternative plant-based meats v. animal meats on biomarkers of inflammation: a secondary analysis of the SWAP-MEAT randomized crossover trial. Journal of nutritional science, 11, e82. https://doi.org/10.1017/jns.2022.84
  • Cunningham, J., Nguyễn, V. M., Adorno, P., &Droulez, V. (2015). Nutrient composition of retail samples of Australian beef sausages. Nutrients, 7(11), 9602–9617. https://doi.org/10.3390/nu7115491
  • Curtain, F., & Grafenauer, S. (2019). Plant-based meat substitutes in the flexitarian age: an audit of products on supermarket shelves. Nutrients, 11(11), 2603.https://doi.org/10.3390/nu11112603
  • Da Silva, V. T., Mateus, N., De Freitas, V., & Fernandes, A. (2024). Plant-Based Meat Analogues: exploring proteins, fibers and polyphenolic compounds as functional ingredients for future food solutions. Foods, 13(14), 2303. https://doi.org/10.3390/foods13142303
  • Deniz, E., Mora, L., Aristoy, M. C., Candogan, K., & Toldra, F. (2016). Free amino acids and bioactive peptides profile of Pastirma during its processing. Food Research International, 89, 194-201. https://doi.org/10.1016/j.foodres.2016.07.025
  • Erdemir, E., & Aksu, M. I. (2017). Changes in the Composition of Free Amino Acid during Production of Pastirma Cured with Different Levels of Sodium Nitrite. Journal of Food Processing and Preservation, 41(2), e12801. https://doi.org/ARTN e12801 10.1111/jfpp.12801
  • Food and Agriculture Organization (FAO). (2024). Second International Conference on Nutrition (ICN2). Rome. https://www.who.int/news-room/events/detail/2014/11/19/default-calendar/fao-who-second-international-conference-on-nutrition-(icn2)
  • FitAudit. (2025, March 18). Amino Acids in Beef. https://fitaudit.com/food/137541/amino
  • Flint, M., Bowles, S., Lynn, A., & Paxman, J. (2023). Novel plant-based meat alternatives: future opportunities and health considerations. Proceedings of the Nutrition Society, 82(3), 370–385. https://doi.org/10.1017/s0029665123000034
  • Global Wellness Report (GWR). (2023). Trends in plant-based foods and sustainability: A comprehensive analysis. https://globalwellnessinstitute.org/wp-content/uploads/2023/11/GWI-WE-Monitor-2023_FINAL.pdf
  • Gómez-Luciano, C. A., de Aguiar, L. K., Vriesekoop, F., ve Urbano, B. (2019). Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food quality and preference, 78, 103732. https://doi.org/10.1016/j.foodqual.2019.103732
  • Hertzler, S. R., Lieblein-Boff, J. C., Weiler, M., & Allgeier, C. (2020). Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients, 12(12), 3704. https://doi.org/10.3390/nu12123704
  • International Organization for Standardization. (1979). Meat and meat products – Determination of nitrogen content (ISO 937:1978). Geneva. Standards ISO.
  • IPSUS. (2025, March 18). Climate-smart food innovation using plant and seaweed proteins from upcycled sources. https://ipsus.org/en/
  • Ishaq, A., Irfan, S., Sameen, A., & Khalid, N. (2022). Plant-based meat analogs: A review with reference to formulation and gastrointestinal fate. Current Research in Food Science, 5, 973–983. https://doi.org/10.1016/j.crfs.2022.06.001
  • Knez, M., Ranić, M., & Gurinović, M. (2023). Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate! Nutrition Reviews, 82(8), 1111–1124. https://doi.org/10.1093/nutrit/nuad103
  • Kazir, M.ve Livney, Y. D. (2021). Plant-based seafood analogs. Molecules, 26(6), 1559. https://doi.org/10.3390/molecules26061559
  • Lima, M., Costa, R., Rodrigues, I., Lameiras, J., & Botelho, G. (2022). A narrative review of alternative protein sources: highlights on meat, fish, egg and dairy analogues. Foods, 11(14), 2053. https://doi.org/10.3390/foods11142053
  • Lin, X., Duan, N., Wu, J., Lv, Z., Wang, Z., & Wu, S. (2023). Potential food safety risk factors in plant-based foods: Source, occurrence, and detection methods. Trends in Food Science and Technology, 138, 511–522. https://doi.org/10.1016/j.tifs.2023.06.032
  • Mariotti, F., & Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets—A Review. Nutrients, 11(11), 2661. https://doi.org/10.3390/nu11112661
  • McClements, D. J., & Großmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. Npj Science of Food, 5, 17. https://doi.org/10.1038/s41538-021-00099-y
  • Messina, M., Sievenpiper, J. L., Williamson, P., Kiel, J., & Erdman, J. W. (2022). Perspective: Soy-based meat and dairy alternatives, despite classification as ultra-processed foods, deliver high-quality nutrition on par with unprocessed or minimally processed animal-based counterparts. Advances in Nutrition, 13(3), 726–738. https://doi.org/10.1093/advances/nmac026
  • Monica, S., Bancalari, E., Siroli, L., Tekiner, I. H., Tainsa, M., Ennahli, S., Bertani, G., & Gatti, M. (2025). Lactic acid fermentation of non-conventional plant-based protein extract. Food Research International, 208, 116174. https://doi.org/10.1016/j.foodres.2025.116174
  • Munialo, C. D., ve Vriesekoop, F. (2023). Plant‐based foods as meat and fat substitutes. Food Science & Nutrition, 11(9), 4898-4911. https://doi.org/10.1002/fsn3.3421
  • Pismag, R. Y., Polo, M. P., Hoyos, J. L., Bravo, J. E., &Roa, D. F. (2024). Effect of extrusion cooking on the chemical and nutritional properties of instant flours: a review. F1000 Research, 12, 1356. https://doi.org/10.12688/f1000research.140748.1
  • Rizzolo-Brime, L., Orta-Ramirez, A., Martin, Y. P., & Jakszyn, P. (2023). Nutritional assessment of plant-based meat alternatives: A comparison of nutritional information of plant-based meat alternatives in Spanish supermarkets. Nutrients, 15(6), 1325. https://doi.org/10.3390/nu15061325
  • Romão, B., Botelho, R. B. A., Nakano, E. Y., Raposo, A., Han, H., Vega-Muñoz, A., ve Zandonadi, R. P. (2022). Are vegan alternatives to meat products healthy? A study on nutrients and main ingredients of products commercialized in Brazil. Frontiers in Public Health, 10, 900598. https://doi.org/10.3389/fpubh.2022.900598
  • Siegrist, M., & Hartmann, C. (2023). Why alternative proteins will not disrupt the meat industry. Meat Science, 203, 109223. https://doi.org/10.1016/j.meatsci.2023.109223
  • Tabak, T., Yılmaz, İ., &Tekiner, İ. H. (2021). Investigation of the changes in volatile composition and amino acid profile of a gala-dinner dish by GC-Ms and LC-MS/MS analyses. International Journal of Gastronomy and Food Science, 25, 100398. https://doi.org/10.1016/j.ijgfs.2021.100398
  • Toujgani, H., Brunin, J., Perraud, E., Allès, B., Touvier, M., Lairon, D., Mariotti, F., Pointereau, P., Baudry, J., & Kesse-Guyot, E. (2023). The nature of protein intake as a discriminating factor of diet sustainability: a multi-criteria approach. Scientific Reports, 13, 17850. https://doi.org/10.1038/s41598-023-44872-3
  • Trindade, P. C. O., Santos, B. A. D., Hollweg, G., Correa, L. P., Pinton, M. B., Padilha, M., Payeras, R. H. Z., Rosa, S. C., Cichoski, A. J., & Campagnol, P. C. B. (2023). Pea protein isolate as a meat substitute in canned pork pâté: nutritional, technological, oxidative, and sensory properties. Foods, 12(18), 3486. https://doi.org/10.3390/foods12183486
  • Van Vliet, S., Bain, J. R., Muehlbauer, M. J., Provenza, F. D., Kronberg, S. L., Pieper, C. F., & Huffman, K. M. (2021). A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable nutrition facts panels. Scientific reports, 11(1), 13828. https://doi.org/10.1038/s41598-021-93100-3
  • World Cancer Research Fund. (2023, May 22). Are plant-based meat alternatives better for us? https://www.wcrf.org/about-us/news-and-blogs/are-plant-based-meat-alternatives-better-for-us/
  • Wu, G., Fanzo, J., Miller, D. D., Pingali, P., Post, M., Steiner, J. L., & Thalacker‐Mercer, A. E. (2014). Production and supply of high‐quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences, 1321(1), 1–19. https://doi.org/10.1111/nyas.12500
  • Zhang, J., Liu, L., Jiang, Y., Faisal, S., Wei, L., Cao, C., Yan, W., & Wang, Q. (2019). Converting peanut protein biomass waste into “double green” meat substitutes using a high-moisture extrusion process: A multiscale method to explore a process for forming a meat-like fibrous structure. Journal of Agricultural and Food Chemistry, 67(38), 10713-10725. https://doi.org/10.1021/acs.jafc.9b02711

Bitkisel-bazlı proteinler ve et analog ürünlerin protein seviyesi, amino asit profili ve sitotoksik etkilerinin incelenmesi

Yıl 2025, Cilt: 15 Sayı: 2, 474 - 485, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1595279

Öz

Bitkisel protein içeren vegan ürünler, Nova gıda sınıflama sistemi’nce işlenmiş ve ultra-işlenmiş sınıflarında değerlendirilmektedir. Sektörel gelişmeler, bitkisel kaynaklı vegan ürünlerin nütrisyonel değerlendirmelerini öne çıkarmaktadır. Bu çalışmada, bitkisel bazlı proteinler ve et analogların, protein, esansiyel (EAA)- ve non-esansiyel (non-EAA) amino asit kompozisyonları ve ürünlerin sitotoksik etkilerinin incelenmesi amaçlanmıştır. Bu bağlamda, zincir marketlerden dört adet hayvansal et ürünü (burger köftesi, pastırma, içli köfte ve sucuk), soya ve bezelye proteinleri ve dört adet bitkisel bazlı et analog ürünleri alınmıştır. Örneklerin protein içeriği Kjeldahl, amino asit profili LC-MS/MS ve sitotoksik etkileri MTS yöntemleri ile analiz edilmiştir. Bulgulara göre, protein içerikleri sırasıyla, soya proteini tozu %60,9, bezelye proteini tozu %81,8, et analog ürünleri %18,5 ± 9,3 ve hayvansal et ürünleri ise %18,1 ± 9,7 olarak bulunmuştur. EAA/non-EAA oranı et analog ürünlerinde 29,2/70,8 ve hayvansal et ürünlerinde 27,9/72,1 olarak tespit edilmiştir. MTS testi, HCT-116 hücre canlılığında, sucuk analog ürünü için 24. saatte %59,84 ± 1,84; pastırma ve dana içli köfte analog ürünleri içinse 48. saatte %57,34 ± 0,52 ve %62,70 ± 0,79 oranlarında anlamlı azaldığını göstermiştir (p<0.05). Özetle, işlenmiş ve ultra işlenmiş bitkisel proteinler ve et analog ürünlerinin insan sağlığı üzerindeki etkilerinin biyoyararlanım ve moleküler tabanlı yöntemler ile de araştırılması gerektiği sonucuna varılmıştır.

Kaynakça

  • Aaslyng, M. D., Dám, A., Petersen, I. L., & Christoffersen, T. (2023). Protein content and amino acid composition in the diet of Danish vegans: a cross-sectional study. BMC Nutrition, 9(1), 131.https://doi.org/10.1186/s40795-023-00793-y
  • Abdik, H. (2022). Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Molecular Biology Reports,49(4), 2963-2971. https://doi.org/10.1007/s11033-022-07117-6
  • Andreani, F., Lin, Z., & Haider, A. (2023). The plant-based food market: Recent innovations and consumer trends. Food Business Review, 28(1), 37-50.https://doi.org/10.3390/nu15020452
  • Helrich, K. (1990). Official methods of analysis of AOAC (15th Ed.). Association of Official Analytical Chemists. Rockville, USA.
  • Bakhsh, A., Lee, S. J., Lee, E. Y., Sabikun, N., Hwang, Y. H., & Joo, S. T. (2021). A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods, 10(3), 560.https://doi.org/10.3390/foods10030560
  • Banach, M., Witkowska, N., & Nowak, M. (2022). Alternative proteins and their impact on human health and sustainability. Journal of Clinical Medicine, 11(4), 872-889.https://doi.org/10.1080/10408398.2022.2089625
  • Boukid, F. (2021). Plant-based meat analogues: From niche to mainstream. European food research and technology, 247(2), 297-308.https://doi.org/10.1007/s00217-020-03630-9
  • Cheng, M. vd. (2022). Climate change and livestock production: A literature review. Atmosphere13(1), 140. https://doi.org/10.3390/atmos13010140
  • Corrêa, P. F., Da Silva, C. F., Ferreira, J. P., & Guerra, J. M. C. (2023). Vegetable-based frankfurter sausage production by different emulsion gels and assessment of physical-chemical, microbiological and nutritional properties. Food Chemistry Advances, 3, 100354. https://doi.org/10.1016/j.focha.2023.100354
  • Crimarco, A., Landry, M. J., Carter, M. M., & Gardner, C. D. (2022). Assessing the effects of alternative plant-based meats v. animal meats on biomarkers of inflammation: a secondary analysis of the SWAP-MEAT randomized crossover trial. Journal of nutritional science, 11, e82. https://doi.org/10.1017/jns.2022.84
  • Cunningham, J., Nguyễn, V. M., Adorno, P., &Droulez, V. (2015). Nutrient composition of retail samples of Australian beef sausages. Nutrients, 7(11), 9602–9617. https://doi.org/10.3390/nu7115491
  • Curtain, F., & Grafenauer, S. (2019). Plant-based meat substitutes in the flexitarian age: an audit of products on supermarket shelves. Nutrients, 11(11), 2603.https://doi.org/10.3390/nu11112603
  • Da Silva, V. T., Mateus, N., De Freitas, V., & Fernandes, A. (2024). Plant-Based Meat Analogues: exploring proteins, fibers and polyphenolic compounds as functional ingredients for future food solutions. Foods, 13(14), 2303. https://doi.org/10.3390/foods13142303
  • Deniz, E., Mora, L., Aristoy, M. C., Candogan, K., & Toldra, F. (2016). Free amino acids and bioactive peptides profile of Pastirma during its processing. Food Research International, 89, 194-201. https://doi.org/10.1016/j.foodres.2016.07.025
  • Erdemir, E., & Aksu, M. I. (2017). Changes in the Composition of Free Amino Acid during Production of Pastirma Cured with Different Levels of Sodium Nitrite. Journal of Food Processing and Preservation, 41(2), e12801. https://doi.org/ARTN e12801 10.1111/jfpp.12801
  • Food and Agriculture Organization (FAO). (2024). Second International Conference on Nutrition (ICN2). Rome. https://www.who.int/news-room/events/detail/2014/11/19/default-calendar/fao-who-second-international-conference-on-nutrition-(icn2)
  • FitAudit. (2025, March 18). Amino Acids in Beef. https://fitaudit.com/food/137541/amino
  • Flint, M., Bowles, S., Lynn, A., & Paxman, J. (2023). Novel plant-based meat alternatives: future opportunities and health considerations. Proceedings of the Nutrition Society, 82(3), 370–385. https://doi.org/10.1017/s0029665123000034
  • Global Wellness Report (GWR). (2023). Trends in plant-based foods and sustainability: A comprehensive analysis. https://globalwellnessinstitute.org/wp-content/uploads/2023/11/GWI-WE-Monitor-2023_FINAL.pdf
  • Gómez-Luciano, C. A., de Aguiar, L. K., Vriesekoop, F., ve Urbano, B. (2019). Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food quality and preference, 78, 103732. https://doi.org/10.1016/j.foodqual.2019.103732
  • Hertzler, S. R., Lieblein-Boff, J. C., Weiler, M., & Allgeier, C. (2020). Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients, 12(12), 3704. https://doi.org/10.3390/nu12123704
  • International Organization for Standardization. (1979). Meat and meat products – Determination of nitrogen content (ISO 937:1978). Geneva. Standards ISO.
  • IPSUS. (2025, March 18). Climate-smart food innovation using plant and seaweed proteins from upcycled sources. https://ipsus.org/en/
  • Ishaq, A., Irfan, S., Sameen, A., & Khalid, N. (2022). Plant-based meat analogs: A review with reference to formulation and gastrointestinal fate. Current Research in Food Science, 5, 973–983. https://doi.org/10.1016/j.crfs.2022.06.001
  • Knez, M., Ranić, M., & Gurinović, M. (2023). Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate! Nutrition Reviews, 82(8), 1111–1124. https://doi.org/10.1093/nutrit/nuad103
  • Kazir, M.ve Livney, Y. D. (2021). Plant-based seafood analogs. Molecules, 26(6), 1559. https://doi.org/10.3390/molecules26061559
  • Lima, M., Costa, R., Rodrigues, I., Lameiras, J., & Botelho, G. (2022). A narrative review of alternative protein sources: highlights on meat, fish, egg and dairy analogues. Foods, 11(14), 2053. https://doi.org/10.3390/foods11142053
  • Lin, X., Duan, N., Wu, J., Lv, Z., Wang, Z., & Wu, S. (2023). Potential food safety risk factors in plant-based foods: Source, occurrence, and detection methods. Trends in Food Science and Technology, 138, 511–522. https://doi.org/10.1016/j.tifs.2023.06.032
  • Mariotti, F., & Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets—A Review. Nutrients, 11(11), 2661. https://doi.org/10.3390/nu11112661
  • McClements, D. J., & Großmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. Npj Science of Food, 5, 17. https://doi.org/10.1038/s41538-021-00099-y
  • Messina, M., Sievenpiper, J. L., Williamson, P., Kiel, J., & Erdman, J. W. (2022). Perspective: Soy-based meat and dairy alternatives, despite classification as ultra-processed foods, deliver high-quality nutrition on par with unprocessed or minimally processed animal-based counterparts. Advances in Nutrition, 13(3), 726–738. https://doi.org/10.1093/advances/nmac026
  • Monica, S., Bancalari, E., Siroli, L., Tekiner, I. H., Tainsa, M., Ennahli, S., Bertani, G., & Gatti, M. (2025). Lactic acid fermentation of non-conventional plant-based protein extract. Food Research International, 208, 116174. https://doi.org/10.1016/j.foodres.2025.116174
  • Munialo, C. D., ve Vriesekoop, F. (2023). Plant‐based foods as meat and fat substitutes. Food Science & Nutrition, 11(9), 4898-4911. https://doi.org/10.1002/fsn3.3421
  • Pismag, R. Y., Polo, M. P., Hoyos, J. L., Bravo, J. E., &Roa, D. F. (2024). Effect of extrusion cooking on the chemical and nutritional properties of instant flours: a review. F1000 Research, 12, 1356. https://doi.org/10.12688/f1000research.140748.1
  • Rizzolo-Brime, L., Orta-Ramirez, A., Martin, Y. P., & Jakszyn, P. (2023). Nutritional assessment of plant-based meat alternatives: A comparison of nutritional information of plant-based meat alternatives in Spanish supermarkets. Nutrients, 15(6), 1325. https://doi.org/10.3390/nu15061325
  • Romão, B., Botelho, R. B. A., Nakano, E. Y., Raposo, A., Han, H., Vega-Muñoz, A., ve Zandonadi, R. P. (2022). Are vegan alternatives to meat products healthy? A study on nutrients and main ingredients of products commercialized in Brazil. Frontiers in Public Health, 10, 900598. https://doi.org/10.3389/fpubh.2022.900598
  • Siegrist, M., & Hartmann, C. (2023). Why alternative proteins will not disrupt the meat industry. Meat Science, 203, 109223. https://doi.org/10.1016/j.meatsci.2023.109223
  • Tabak, T., Yılmaz, İ., &Tekiner, İ. H. (2021). Investigation of the changes in volatile composition and amino acid profile of a gala-dinner dish by GC-Ms and LC-MS/MS analyses. International Journal of Gastronomy and Food Science, 25, 100398. https://doi.org/10.1016/j.ijgfs.2021.100398
  • Toujgani, H., Brunin, J., Perraud, E., Allès, B., Touvier, M., Lairon, D., Mariotti, F., Pointereau, P., Baudry, J., & Kesse-Guyot, E. (2023). The nature of protein intake as a discriminating factor of diet sustainability: a multi-criteria approach. Scientific Reports, 13, 17850. https://doi.org/10.1038/s41598-023-44872-3
  • Trindade, P. C. O., Santos, B. A. D., Hollweg, G., Correa, L. P., Pinton, M. B., Padilha, M., Payeras, R. H. Z., Rosa, S. C., Cichoski, A. J., & Campagnol, P. C. B. (2023). Pea protein isolate as a meat substitute in canned pork pâté: nutritional, technological, oxidative, and sensory properties. Foods, 12(18), 3486. https://doi.org/10.3390/foods12183486
  • Van Vliet, S., Bain, J. R., Muehlbauer, M. J., Provenza, F. D., Kronberg, S. L., Pieper, C. F., & Huffman, K. M. (2021). A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable nutrition facts panels. Scientific reports, 11(1), 13828. https://doi.org/10.1038/s41598-021-93100-3
  • World Cancer Research Fund. (2023, May 22). Are plant-based meat alternatives better for us? https://www.wcrf.org/about-us/news-and-blogs/are-plant-based-meat-alternatives-better-for-us/
  • Wu, G., Fanzo, J., Miller, D. D., Pingali, P., Post, M., Steiner, J. L., & Thalacker‐Mercer, A. E. (2014). Production and supply of high‐quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences, 1321(1), 1–19. https://doi.org/10.1111/nyas.12500
  • Zhang, J., Liu, L., Jiang, Y., Faisal, S., Wei, L., Cao, C., Yan, W., & Wang, Q. (2019). Converting peanut protein biomass waste into “double green” meat substitutes using a high-moisture extrusion process: A multiscale method to explore a process for forming a meat-like fibrous structure. Journal of Agricultural and Food Chemistry, 67(38), 10713-10725. https://doi.org/10.1021/acs.jafc.9b02711
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genotoksisite ve Sitotoksisite, Gıda Biyoteknolojisi
Bölüm Makaleler
Yazarlar

Yasemin Yılmazer 0000-0003-2190-073X

Rula Abdülhamitoğlu 0000-0001-8802-0724

İsmail Hakkı Tekiner 0000-0002-7248-2446

Aleyna Çavdar 0000-0002-1835-8911

Şermin Durak 0000-0001-6741-4345

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 12 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Yılmazer, Y., Abdülhamitoğlu, R., Tekiner, İ. H., … Çavdar, A. (2025). Investigation of protein level, amino acid profile and cytotoxic effects of plant-based proteins and meat analogues. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(2), 474-485. https://doi.org/10.17714/gumusfenbil.1595279