Derleme
BibTex RIS Kaynak Göster

Yenilikçi teknolojilerden prensip ve yasal yönleriyle vurgulu elektrik alan teknolojisi

Yıl 2019, , 354 - 363, 19.09.2019
https://doi.org/10.29050/harranziraat.469870

Öz

Vurgulu elektrik alan (VEA) teknolojisi, gıdaların mikrobiyolojik kalitesinin iyileştirilmesini amaçlayan, beslenme yönünden özelliklerini koruyan aynı zamanda gıdaların fonksiyonel özelliklerinin geliştirilmesine katkı sağladığı bilinen bir tekniktir. Klasik ısıl işlem uygulamalarına kıyasla düşük sıcaklıklarda kısa süreli olarak gıdaya gönderilen elektrik alan sinyalleri ile bakteri sporları haricinde neredeyse tüm patojenler ve gıdalarda bozulma etmeni olan bakteriler inaktif hale getirilmektedir. VEA teknolojisi ile mikroorganizma inaktivasyon mekanizma üzerine, elektrik alan etkisiyle hücrelerde membran geçirgenliğinin artması, elektroporasyon sonucunda membranın gözenekli hale gelmesi ve yine aynı etkiyle oksidasyon ve redüksiyon reaksiyonlarının meydana gelmesi gibi mevcut görüşler bulunmaktadır. Yenilikçi teknolojilerden birisi olarak yöntemin güvenilirliği, yöntemin mikroorganizmalar üzerindeki başarısı ile birlikte toksikolojik ve alerjik etkileri yönünden desteklenerek, yasal otoriteler tarafından onaylandıktan sonra daha net olarak ortaya konulacaktır. Yöntemin ticari olarak uygulanabilirliğinin ülkelere göre değişiklik göstermeyen, global bir yasal düzenleme yapıldıktan sonra mümkün olacağı düşünülmektedir.


Kaynakça

  • Anonymous,2011a.http://www.fshn.illinois.edu/food_processing_forum/.../c3_Barbosa_Abstract.pdf, Erişim tarihi 14.05.2011. Anonymous,2011b.http://onlinelibrary.wiley.com/doi/10.1111/j.17454565.2000.tb00619.x/pdf. Erişim tarihi 12.05.2011.
  • Aronsson, K., Ulf Rönner,U., Borch, E., 2005. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. International Journal of Food Microbiology, 99: 19 – 32. Bendicho, S., Barbosa - Cánovas, G.V., Martín-Bellosa, O., 2002. Milk processing by high intensity pulsed electric fields. Trends in Food Science and Technology,13: 195–204.
  • Buniowska, M., Carbonell-Capella, J.M., Frigola, A., Esteve, M.J., 2017. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chemistry, 221: 1834–1842.
  • Calderon-Miranda, ML., Barbosa-Canovas, GV., Swanson, BG.,1999. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. International Journal of Food Microbiology, 51: 19–30.
  • Castro, S.M., Inácio, R.S., Alexandre, E.M.C., Fidalgo, L.G., Pereira,S., Quaresma, P., Freitas, P., Teixeira, P., Pintado, M., Gomes, A.M., Tonello, C., 2018. Environmental Footprint of Emerging Technologies, Regulatory and Legislative Issues, p. 255-276. In: Innovative Technologies for Food Preservation Inactivation of Spoilage and Pathogenic Microorganisms. Academic Press, USA. Corbo, M.,R., Bevilacqua, A., Campaniello, D., D’Amato, D., Speranza, B., Sinigaglia, M.,2009. Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches- a review. International Journal of Food Science and Technology, 44: 223-241.
  • Cullen, P.J., Tiwari, B.K., and Valdramidis, V.,P., 2012. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods, p. 1-6. In: Novel Thermal and Non-Thermal Technologies for Fluid Foods, Food Science and Technology International Series, Academic Press is an imprint of Elsevier, UK.
  • Devlieghere, F., Vermeiren,, L., Debevere, J., 2004. New preservation technologies: Possibilities and limitations. International Dairy Journal, 14: 273-285.
  • Dutreux, N., Notermans, S., Wijtzes, T., Góngora-Nieto, M.M., Barbosa- Cánovas, G:V, Swanson, B.G., 2000. Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. International Journal of Food Microbiology, 54: 91–98.
  • Elez-Martínez, P., Escolá -Hernández, J., Soliva-Fortuny, R.C., Martín-Bellosa, O., 2005. Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology, 22: 311–319.
  • Evrendilek, G.A., Tok,, F.M., Soylu, S., 2008. Inactivation of Penicillum expansum in sour cherry juice, peach and apricot nectars by pulsed electric fields. Food Microbiology, 25: 662– 667.
  • Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S.M.T., Radojčin, M., Putnik, P., Kovačević, D.B., 2018. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41: e12638. DOI: 10.1111/jfpe.12638.
  • Galic, K. Scetar, M., Kurek, M. 2011. The benefits of processing and packaging. Trends in Food Science and Technology., 22 (2-3): 127-137.
  • Góngora-Nieto, M.M., Sepulveda, D.R., Pedrow, P., Barbosa- Cánovas, G.V., Swanson, B.G., 2002. Food Processing by Pulsed Electric Fields: Treatment Delivery, Inactivation Level, and Regulatory Aspects. LWT- Food Science and Technology, 35(5): 375-388. González-Arenzana, L., Portu, J., López, R., López, N., Santamaría, P., Garde-Cerdán, T., López-Alfaro, I., 2015. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 29: 187–192.
  • Gonzalez, M.E., Barrett, D.M., 2010. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. Journal of Food Science, 75 (7): 121-130. Grahl, T., Markl, H. 1996. Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology, 45: 148-157. Guimaraes, J.T., Silva, E.K., Freitas, M.Q., Cruz, M.A.A.G., 2018. Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22: 62-66.
  • Impe, J.V., Smet, C., Tiwari, B., Greiner, R., Ojha, S., Stulić, V., Vukušić, T., Jambrak, A.R., 2018. State of the art of non -thermal and thermal processing for inactivation of microorganisms. Journal of Applied Microbiology, Doi: 10.1111/jam.13751.
  • Knorr, D., Ade-Omowaye, B.I.O., Heinz, V., 2002. Nutritional improvement of plant foods by non-thermal processing. Proceedings of the Nutrition Society, 61: 311-318.
  • Lado, B.H., Yousef, A.E. , 2002. Alternative food-preservation Technologies: efficacy and mechanisms. Microbes and Infections, 4: 433-430.
  • Li, X., Farid, M., 2016. A review on recent development in non-conventional food sterilization Technologies. Journal of Food Engineering, 182: 33-45. Nguyen, P., Mittal, G.S., 2007. Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials. Chemical Engineering and Processing: Process Intensification, 46: 360–365.
  • Onwulata C.I., 2008. p. 400 In: Whey Processing Functionality and Health Benefits, Milk Whey Processes: Current and Future Trends. Wiley-Blackwell Publishing, USA.
  • Pan, Y., Sun, D., Han, Z., 2017. Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends in Food Science and Technology, 64: 13-22. Pereira, R.N., Vicente, A.A., 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43: 1936–1943.
  • Picart, L., Dumay, E., Cheftel, C., 2002. Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: influence of electric parameters and food composition. Innovative Food Science and Emerging Technologies, 3: 357-369. Pina-Pérez, M.C., Rodrigo, D., Ferrer Bernat, C., Rodrigo Enguidanos, M., Martínez-López, A., 2007. Inactivation of Enterobacter sakazakii by pulsed electric field in buffered peptone water and infant formula milk. International Dairy Journal, 17: 1441–1449.
  • Qin, B. Barbosa- Cánovas, G.V., Swanson, B.G., Pedrow, P.D. Olsen, R.G., 1998. Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Transactions on Industry Applications, 34: 1.
  • Raso,J., Calderon´ , M.L., Gongora ´ ,M., Barbosa-Canovas ´, G., Swanson, B.G., 1998. Inactivation of Mold Ascospores and Conidiospores Suspended in Fruit Juices by Pulsed Electric Fields. LWT- Food Science and Technology, 31(7-8): 668-672.
  • Schilling, S., Alber, T., Toepfl, S., Neidhar, S., Knorr, D., Schieber, A., Carle, R. 2007. Effects of pulsed electric field treatment of apple mash on juice yield and quality attributes of apple juices. Innovative Food Science and Emerging Technologies, 8: 127–134. Scott J. MacGregor, Owen Farish, Senior Member, IEEE, Richard Fouracre, Neil J. Rowan, and John G. Anderson., 2000. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Transactions on Plasma Science, 28 (1): 1. Sepulveda, D. R., Guerrero, J. A., Barbosa-Canovas, G. V., 2006. Influence of electric current density on the bactericidal effectiveness of pulsed electric field treatments. Journal of Food Engineering, 76(4): 656-663.
  • Sharma, P., Oey, I., Bremer, P., Everett, D.W., 2014. Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal, 39 (1): 146-156.
  • Siemer, C.,Toepfl, S.,Heinz, V., 2014a. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy e I. Influence of process- and product parameters. Food Control 39: 163-171.
  • Siemer, C.,Toepfl, S.,Heinz, V., 2014b. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) incombination with thermal energy II. Modeling thermal inactivation of B. subtilis spores during PEF processing in combination with thermal energy. Food Control, 39: 244-250.
  • Sun, D., 2005. p. 771. In Emerging Technologies for Food Processing, Food Science and Technology International Series. Elsevier Academic Press, USA.
  • Timmermans R.A.H., NieropGroot, M.N., Nederhoff, A.L., van Boekel, M.A.J.S., Matser, A.M., Mastwijk, H.C., 2014. Pulsed electric field processing of different fruit juices: Impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. International Journal of Food Microbiology, 173: 105–111.
  • Toepfl, S., Heinz, V., Knorr, D., 2005. Overview of pulsed electric field processing for food, p.69-97. In: Emerging Technologies for Food Processing, Elsevier Ltd. 2005.
  • Vega-Mercado, H., Martín-Bellosa., O., Qin, B., Chang, F.J., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G., 1997. Non-thermal food preservation: Pulsed electric fields. Trends in Food Science and Technology, 8 (5): 151-157.
  • Wan, J., Coventry, J., Swiergon, P., Sanguansri, P., Versteeg, C., 2009. Advances in innovative processing technologies for microbial inactivation and enhancement of food safety - pulsed electric field and low temperature plasma. Trends in Food Science and Technology, 20: 414-424.
  • Wang, Z., Wang, J., Guo, S., Ma, S.,Yu., S., 2013. Kinetic modeling of maillard reaction system subjected to pulsed electric field. Innovative Food Science and Emerging Technologies, 20: 121–125.
  • Wouters, P.C., Dutreux, N., Smelt, J.P.P.M., Lelieveld, L.M., 1999. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Applied and Environmental Microbiology, 65 (12): 5364-5371.
  • Wouters, R.C., Alvarez, I., Raso,J., 2001. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology, 12: 112–121.

Principles and legal issues of pulsed electric field technology as a novel technique

Yıl 2019, , 354 - 363, 19.09.2019
https://doi.org/10.29050/harranziraat.469870

Öz

The goal of Pulsed Electric Field (PEF) technology is to enhance microbiological properties of foods by protecting nutritional quality and also known as a technique contributing some functional properties of foods. Electric field signals applied at low temperatures for a short period of time results in inactivation of all pathogens and food deteriorating bacteria except bacterial spores. Improvement in cell permeability, electroporation in cell membrane and oxidation and reduction reactions occurring as a result of electric field are some theories about the microbial inactivation mechanism.  As a novel technique the reliability of pulsed electric field, succeed in microbial inactivation, will be proved well when toxicological and allergenic effects are examined and confirmed positively and after legal authorities’ approval. The technique’s industrial application will be possible when global legal aspects are performed without variations according to countries.


Kaynakça

  • Anonymous,2011a.http://www.fshn.illinois.edu/food_processing_forum/.../c3_Barbosa_Abstract.pdf, Erişim tarihi 14.05.2011. Anonymous,2011b.http://onlinelibrary.wiley.com/doi/10.1111/j.17454565.2000.tb00619.x/pdf. Erişim tarihi 12.05.2011.
  • Aronsson, K., Ulf Rönner,U., Borch, E., 2005. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. International Journal of Food Microbiology, 99: 19 – 32. Bendicho, S., Barbosa - Cánovas, G.V., Martín-Bellosa, O., 2002. Milk processing by high intensity pulsed electric fields. Trends in Food Science and Technology,13: 195–204.
  • Buniowska, M., Carbonell-Capella, J.M., Frigola, A., Esteve, M.J., 2017. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chemistry, 221: 1834–1842.
  • Calderon-Miranda, ML., Barbosa-Canovas, GV., Swanson, BG.,1999. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. International Journal of Food Microbiology, 51: 19–30.
  • Castro, S.M., Inácio, R.S., Alexandre, E.M.C., Fidalgo, L.G., Pereira,S., Quaresma, P., Freitas, P., Teixeira, P., Pintado, M., Gomes, A.M., Tonello, C., 2018. Environmental Footprint of Emerging Technologies, Regulatory and Legislative Issues, p. 255-276. In: Innovative Technologies for Food Preservation Inactivation of Spoilage and Pathogenic Microorganisms. Academic Press, USA. Corbo, M.,R., Bevilacqua, A., Campaniello, D., D’Amato, D., Speranza, B., Sinigaglia, M.,2009. Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches- a review. International Journal of Food Science and Technology, 44: 223-241.
  • Cullen, P.J., Tiwari, B.K., and Valdramidis, V.,P., 2012. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods, p. 1-6. In: Novel Thermal and Non-Thermal Technologies for Fluid Foods, Food Science and Technology International Series, Academic Press is an imprint of Elsevier, UK.
  • Devlieghere, F., Vermeiren,, L., Debevere, J., 2004. New preservation technologies: Possibilities and limitations. International Dairy Journal, 14: 273-285.
  • Dutreux, N., Notermans, S., Wijtzes, T., Góngora-Nieto, M.M., Barbosa- Cánovas, G:V, Swanson, B.G., 2000. Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. International Journal of Food Microbiology, 54: 91–98.
  • Elez-Martínez, P., Escolá -Hernández, J., Soliva-Fortuny, R.C., Martín-Bellosa, O., 2005. Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology, 22: 311–319.
  • Evrendilek, G.A., Tok,, F.M., Soylu, S., 2008. Inactivation of Penicillum expansum in sour cherry juice, peach and apricot nectars by pulsed electric fields. Food Microbiology, 25: 662– 667.
  • Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S.M.T., Radojčin, M., Putnik, P., Kovačević, D.B., 2018. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41: e12638. DOI: 10.1111/jfpe.12638.
  • Galic, K. Scetar, M., Kurek, M. 2011. The benefits of processing and packaging. Trends in Food Science and Technology., 22 (2-3): 127-137.
  • Góngora-Nieto, M.M., Sepulveda, D.R., Pedrow, P., Barbosa- Cánovas, G.V., Swanson, B.G., 2002. Food Processing by Pulsed Electric Fields: Treatment Delivery, Inactivation Level, and Regulatory Aspects. LWT- Food Science and Technology, 35(5): 375-388. González-Arenzana, L., Portu, J., López, R., López, N., Santamaría, P., Garde-Cerdán, T., López-Alfaro, I., 2015. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 29: 187–192.
  • Gonzalez, M.E., Barrett, D.M., 2010. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. Journal of Food Science, 75 (7): 121-130. Grahl, T., Markl, H. 1996. Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology, 45: 148-157. Guimaraes, J.T., Silva, E.K., Freitas, M.Q., Cruz, M.A.A.G., 2018. Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22: 62-66.
  • Impe, J.V., Smet, C., Tiwari, B., Greiner, R., Ojha, S., Stulić, V., Vukušić, T., Jambrak, A.R., 2018. State of the art of non -thermal and thermal processing for inactivation of microorganisms. Journal of Applied Microbiology, Doi: 10.1111/jam.13751.
  • Knorr, D., Ade-Omowaye, B.I.O., Heinz, V., 2002. Nutritional improvement of plant foods by non-thermal processing. Proceedings of the Nutrition Society, 61: 311-318.
  • Lado, B.H., Yousef, A.E. , 2002. Alternative food-preservation Technologies: efficacy and mechanisms. Microbes and Infections, 4: 433-430.
  • Li, X., Farid, M., 2016. A review on recent development in non-conventional food sterilization Technologies. Journal of Food Engineering, 182: 33-45. Nguyen, P., Mittal, G.S., 2007. Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials. Chemical Engineering and Processing: Process Intensification, 46: 360–365.
  • Onwulata C.I., 2008. p. 400 In: Whey Processing Functionality and Health Benefits, Milk Whey Processes: Current and Future Trends. Wiley-Blackwell Publishing, USA.
  • Pan, Y., Sun, D., Han, Z., 2017. Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends in Food Science and Technology, 64: 13-22. Pereira, R.N., Vicente, A.A., 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43: 1936–1943.
  • Picart, L., Dumay, E., Cheftel, C., 2002. Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: influence of electric parameters and food composition. Innovative Food Science and Emerging Technologies, 3: 357-369. Pina-Pérez, M.C., Rodrigo, D., Ferrer Bernat, C., Rodrigo Enguidanos, M., Martínez-López, A., 2007. Inactivation of Enterobacter sakazakii by pulsed electric field in buffered peptone water and infant formula milk. International Dairy Journal, 17: 1441–1449.
  • Qin, B. Barbosa- Cánovas, G.V., Swanson, B.G., Pedrow, P.D. Olsen, R.G., 1998. Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Transactions on Industry Applications, 34: 1.
  • Raso,J., Calderon´ , M.L., Gongora ´ ,M., Barbosa-Canovas ´, G., Swanson, B.G., 1998. Inactivation of Mold Ascospores and Conidiospores Suspended in Fruit Juices by Pulsed Electric Fields. LWT- Food Science and Technology, 31(7-8): 668-672.
  • Schilling, S., Alber, T., Toepfl, S., Neidhar, S., Knorr, D., Schieber, A., Carle, R. 2007. Effects of pulsed electric field treatment of apple mash on juice yield and quality attributes of apple juices. Innovative Food Science and Emerging Technologies, 8: 127–134. Scott J. MacGregor, Owen Farish, Senior Member, IEEE, Richard Fouracre, Neil J. Rowan, and John G. Anderson., 2000. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Transactions on Plasma Science, 28 (1): 1. Sepulveda, D. R., Guerrero, J. A., Barbosa-Canovas, G. V., 2006. Influence of electric current density on the bactericidal effectiveness of pulsed electric field treatments. Journal of Food Engineering, 76(4): 656-663.
  • Sharma, P., Oey, I., Bremer, P., Everett, D.W., 2014. Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal, 39 (1): 146-156.
  • Siemer, C.,Toepfl, S.,Heinz, V., 2014a. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy e I. Influence of process- and product parameters. Food Control 39: 163-171.
  • Siemer, C.,Toepfl, S.,Heinz, V., 2014b. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) incombination with thermal energy II. Modeling thermal inactivation of B. subtilis spores during PEF processing in combination with thermal energy. Food Control, 39: 244-250.
  • Sun, D., 2005. p. 771. In Emerging Technologies for Food Processing, Food Science and Technology International Series. Elsevier Academic Press, USA.
  • Timmermans R.A.H., NieropGroot, M.N., Nederhoff, A.L., van Boekel, M.A.J.S., Matser, A.M., Mastwijk, H.C., 2014. Pulsed electric field processing of different fruit juices: Impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. International Journal of Food Microbiology, 173: 105–111.
  • Toepfl, S., Heinz, V., Knorr, D., 2005. Overview of pulsed electric field processing for food, p.69-97. In: Emerging Technologies for Food Processing, Elsevier Ltd. 2005.
  • Vega-Mercado, H., Martín-Bellosa., O., Qin, B., Chang, F.J., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G., 1997. Non-thermal food preservation: Pulsed electric fields. Trends in Food Science and Technology, 8 (5): 151-157.
  • Wan, J., Coventry, J., Swiergon, P., Sanguansri, P., Versteeg, C., 2009. Advances in innovative processing technologies for microbial inactivation and enhancement of food safety - pulsed electric field and low temperature plasma. Trends in Food Science and Technology, 20: 414-424.
  • Wang, Z., Wang, J., Guo, S., Ma, S.,Yu., S., 2013. Kinetic modeling of maillard reaction system subjected to pulsed electric field. Innovative Food Science and Emerging Technologies, 20: 121–125.
  • Wouters, P.C., Dutreux, N., Smelt, J.P.P.M., Lelieveld, L.M., 1999. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Applied and Environmental Microbiology, 65 (12): 5364-5371.
  • Wouters, R.C., Alvarez, I., Raso,J., 2001. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology, 12: 112–121.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Ziraat Mühendisliği, Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Derleme Makaleleri
Yazarlar

Elif Ayşe Anlı 0000-0002-0524-4851

Yayımlanma Tarihi 19 Eylül 2019
Gönderilme Tarihi 12 Ekim 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Anlı, E. A. (2019). Yenilikçi teknolojilerden prensip ve yasal yönleriyle vurgulu elektrik alan teknolojisi. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(3), 354-363. https://doi.org/10.29050/harranziraat.469870

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.