Year 2019,
, 1695 - 1705, 08.12.2019
Yong Sun
Zhi-gang Wang
Antti Rasila
References
- [1] Y. Abu Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex
functions of order -1/2, Arch. Math. (Basel) 103 (6), 461–471, 2014.
- [2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,
in: Inequal. Theory and Appl. 6, 1–7, editors: Y. J. Cho, J.K. Kim and S.S. Dragomir,
2010.
- [3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic
functions, Appl. Math. Lett. 26 (1), 103–107, 2013.
- [4] D. Bansal, S. Haharana, and J.K. Prajapat, Third order Hankel determinant for
certain univalent functions, J. Korean Math. Soc. 52, 1139–1148, 2015.
- [5] S.V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univelent
mappings and hypergeometric mappings, Rocky Mt. J. Math. 44, 753–777, 2014.
- [6] D. Bshouty, S.S. Joshi, and S.B. Joshi, On close-to-convex harmonic mappings, Complex
Var. Elliptic Equ. 58, 1195–1199, 2013.
- [7] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings,
Complex Appl. Oper. Theory 5, 767–774, 2011.
- [8] D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69, 362–
366, 1963.
- [9] J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain
classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60, 354–371, 2015.
- [10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn.
Ser. A. I Math. 9, 3–25, 1984.
- [11] P. Dienes, The Taylor Series, Dover, New York, 1957.
- [12] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983.
- [13] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge,
2004.
- [14] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée
par son développement de Taylor, Compos. Math. 7, 20–88, 1940.
- [15] M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functions, J. London
Math. Soc. 8, 85–89, 1933.
- [16] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J.
Math. Anal. 4 (52), 2573–2585, 2010.
- [17] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc.
Lond. Math. Soc. 18 (3), 77–94, 1968.
- [18] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose
derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2), Art. 50, 5 pp,
2006.
- [19] A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex
functions, Int. J. Math. Anal. 1 (13), 619–625, 2007.
- [20] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully
starlikeness of harmonic mappings, Complex Var. Elliptic Equ. 59, 539–552, 2014.
- [21] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer.
Math. Soc. 101, 89–95, 1987.
- [22] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math.
49, 420–433, 1987.
- [23] S.K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel
determinant of certain univalent functions, J. Inequal. Appl. 2013, Art. 281, 17 pp,
2013.
- [24] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex
function, Proc. Amer. Math. Soc. 85, 225–230, 1982.
- [25] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with
derivatives in P, Proc. Am. Math. Soc. 87, 251–257, 1983.
- [26] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Am.
Math. Soc. 21, 545–552, 1969.
- [27] P.T. Mocanu, Sufficient conditions of univalence for complex functions in the class
C1, Rev. Anal. Numér. Théor. Approx. 10, 75–79, 1981.
- [28] P.T. Mocanu, Injectivity conditions in the complex plane, Complex Appl. Oper. Theory
5, 759–766, 2011.
- [29] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 59, 204–216, 2014.
- [30] H. Orhan and P. Zaprawa, Third Hankel determinants for starlike and convex functions,
Bull. Korean Math. Soc. 55, 165–173, 2018.
- [31] C. Pommerenke, On the coefficients and Hankel determinant of univalent functions,
J. Lond. Math. Soc. 41, 111–122, 1966.
- [32] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika
14, 108–112, 1967.
- [33] S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in: Topics
in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19, 267–333,
Ramanujan Math. Soc., Mysore, 2013.
- [34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput.
Methods Funct. Theory 12, 669–685, 2012.
- [35] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain
classes of univalent harmonic mappings, Mediterr. J. Math. 12, 647–665, 2015.
- [36] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of
analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013, Art.
412, 8 pp., 2013.
- [37] T.J. Suffridge, Some special classes of conformal mappings, in: Handbook of complex
analysis: geometric function theory (Edited by Kühnau), 2, 309–338, Elsevier,
Amsterdam, 2005.
- [38] Y. Sun, Y. Jiang, and A. Rasila, On a subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 61, 1627–1643, 2016.
- [39] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant
for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34, 121–127,
2015.
- [40] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,
Mediterr. J. Math. 14 (1), Art. 19, 10 pp., 2017.
On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings
Year 2019,
, 1695 - 1705, 08.12.2019
Yong Sun
Zhi-gang Wang
Antti Rasila
Abstract
In this paper, we obtain the upper bounds to the third Hankel determinants for convex functions of order $\alpha$ and bounded turning functions of order $\alpha$. Furthermore, several relevant results on a new subclass of close-to-convex harmonic mappings are obtained. Connections of the results presented here to those that can be found in the literature are also discussed.
References
- [1] Y. Abu Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex
functions of order -1/2, Arch. Math. (Basel) 103 (6), 461–471, 2014.
- [2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,
in: Inequal. Theory and Appl. 6, 1–7, editors: Y. J. Cho, J.K. Kim and S.S. Dragomir,
2010.
- [3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic
functions, Appl. Math. Lett. 26 (1), 103–107, 2013.
- [4] D. Bansal, S. Haharana, and J.K. Prajapat, Third order Hankel determinant for
certain univalent functions, J. Korean Math. Soc. 52, 1139–1148, 2015.
- [5] S.V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univelent
mappings and hypergeometric mappings, Rocky Mt. J. Math. 44, 753–777, 2014.
- [6] D. Bshouty, S.S. Joshi, and S.B. Joshi, On close-to-convex harmonic mappings, Complex
Var. Elliptic Equ. 58, 1195–1199, 2013.
- [7] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings,
Complex Appl. Oper. Theory 5, 767–774, 2011.
- [8] D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69, 362–
366, 1963.
- [9] J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain
classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60, 354–371, 2015.
- [10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn.
Ser. A. I Math. 9, 3–25, 1984.
- [11] P. Dienes, The Taylor Series, Dover, New York, 1957.
- [12] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983.
- [13] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge,
2004.
- [14] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée
par son développement de Taylor, Compos. Math. 7, 20–88, 1940.
- [15] M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functions, J. London
Math. Soc. 8, 85–89, 1933.
- [16] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J.
Math. Anal. 4 (52), 2573–2585, 2010.
- [17] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc.
Lond. Math. Soc. 18 (3), 77–94, 1968.
- [18] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose
derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2), Art. 50, 5 pp,
2006.
- [19] A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex
functions, Int. J. Math. Anal. 1 (13), 619–625, 2007.
- [20] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully
starlikeness of harmonic mappings, Complex Var. Elliptic Equ. 59, 539–552, 2014.
- [21] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer.
Math. Soc. 101, 89–95, 1987.
- [22] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math.
49, 420–433, 1987.
- [23] S.K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel
determinant of certain univalent functions, J. Inequal. Appl. 2013, Art. 281, 17 pp,
2013.
- [24] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex
function, Proc. Amer. Math. Soc. 85, 225–230, 1982.
- [25] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with
derivatives in P, Proc. Am. Math. Soc. 87, 251–257, 1983.
- [26] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Am.
Math. Soc. 21, 545–552, 1969.
- [27] P.T. Mocanu, Sufficient conditions of univalence for complex functions in the class
C1, Rev. Anal. Numér. Théor. Approx. 10, 75–79, 1981.
- [28] P.T. Mocanu, Injectivity conditions in the complex plane, Complex Appl. Oper. Theory
5, 759–766, 2011.
- [29] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 59, 204–216, 2014.
- [30] H. Orhan and P. Zaprawa, Third Hankel determinants for starlike and convex functions,
Bull. Korean Math. Soc. 55, 165–173, 2018.
- [31] C. Pommerenke, On the coefficients and Hankel determinant of univalent functions,
J. Lond. Math. Soc. 41, 111–122, 1966.
- [32] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika
14, 108–112, 1967.
- [33] S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in: Topics
in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19, 267–333,
Ramanujan Math. Soc., Mysore, 2013.
- [34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput.
Methods Funct. Theory 12, 669–685, 2012.
- [35] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain
classes of univalent harmonic mappings, Mediterr. J. Math. 12, 647–665, 2015.
- [36] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of
analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013, Art.
412, 8 pp., 2013.
- [37] T.J. Suffridge, Some special classes of conformal mappings, in: Handbook of complex
analysis: geometric function theory (Edited by Kühnau), 2, 309–338, Elsevier,
Amsterdam, 2005.
- [38] Y. Sun, Y. Jiang, and A. Rasila, On a subclass of close-to-convex harmonic mappings,
Complex Var. Elliptic Equ. 61, 1627–1643, 2016.
- [39] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant
for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34, 121–127,
2015.
- [40] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,
Mediterr. J. Math. 14 (1), Art. 19, 10 pp., 2017.