[1] I.A. Aliev, Bi-parametric potentials, relevant function spaces and wavelet-like transforms,
Integral Equations and Operator Theory, 65, 151–167, 2009.
[2] I.A. Aliev and M. Eryigit, Inversion of Bessel potantials with the aid of weighted
wavelet transforms, Math. Nachr. 242, 27–37, 2002.
[3] I.A. Aliev and B. Rubin, Parabolic potentials and wavelet transforms with the generalized
translation, Stud. Math. 145 (1), 1–16, 2001.
[4] I.A. Aliev, S. Sezer and M. Eryiğit, An integral transform associated to the Poisson
integral and inversion of Flett potentials, J. Math. Anal. Appl. 321, 691–704, 2006.
[5] I.A. Aliev, B. Rubin, S. Sezer and S.B. Uyhan, Composite Wavelet Transforms:
Aplications and Perspectives, Contemp. Math. AMS, 464, 1–27, 2008.
[6] V.Balakrishnan , Fractional powers of closed operators and the semi-groups generated
by them, Pasific J. Math. 10, 419–437, 1960.
[7] T.M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. Lond. Math.
Soc. 3 (3), 385–451, 1971.
[8] P.I. Lizorkin, Characterization of the spaces $L_{p}^{r}\left( \mathbb{R}^{n}\right) $ in terms of difference singular
integrals, Mat. Sb. (N.S.) 81 (1), 79–91, 1970 (in Russian).
[9] V.A. Nogin, On inversion of Bessel potentials, J. Differential Equations, 18, 1407–
1411, 1982.
[10] V.A. Nogin and B.S. Rubin, Inversion of parabolic potentials with L p-densities, Mat.
Zametki, 39, 831–840, 1986 (in Russian).
[11] B. Rubin, Description and inversion of Bessel potentials by means of hypersingular
integrals with weighted differences, Differ. Uravn. 22 (10), 1805–1818, 1986.
[12] B. Rubin, A method of characterization and inversion of Bessel and Riesz potentials,
Sov. Math. (Iz. VUZ) 30 (5), 78–89, 1986.
[13] B. Rubin, Inversion of potentials on $\mathbb{R}^{n}$ with the aid of Gauss-Weierstrass integrals,
Math. Notes, 41 (1-2), 22–27, 1987. English translation from Math. Zametki 41 (1),
34–42, 1987.
[14] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in
Pure and Applied Mathematics. Longman, Harlow, 1996.
[15] S.G. Samko, Hypersingular integrals and their applications, Izdat., Rostov Univ.,
Rostovon-Don, 1984 (in Russian).
[16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives:
Theory and Applications, Gordon and Breach, Sci. Publ., London, New York, 1993.
[17] S. Sezer and I.A. Aliev, A New Characterization Of The Riesz Potential Spaces With
The Aid Of A Composite Wavelet Transform, J. Math. Anal. Appl. 372, 549–558,
2010.
[18] E. Stein, The characterization of functions arising as potentials, I, Bull. Amer. Math.
Soc. 67 (1), 102–104, 1961.
[19] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton New Jersey, 1970.
[20] E. Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton
Univ. Press, Princeton NJ., 1971.
[21] R.L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions,
Trans. Amer. Math. Soc. 134 (3), 421–435, 1968.
A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials
In the present paper we introduce new ``truncated" hypersingular integral operators $D_{\epsilon}^{\alpha}f,(\epsilon>0)$ generated by the modified Poisson semigroup and obtain an explicit inversion formula for the Flett potentials in framework of $L_p$--spaces.
[1] I.A. Aliev, Bi-parametric potentials, relevant function spaces and wavelet-like transforms,
Integral Equations and Operator Theory, 65, 151–167, 2009.
[2] I.A. Aliev and M. Eryigit, Inversion of Bessel potantials with the aid of weighted
wavelet transforms, Math. Nachr. 242, 27–37, 2002.
[3] I.A. Aliev and B. Rubin, Parabolic potentials and wavelet transforms with the generalized
translation, Stud. Math. 145 (1), 1–16, 2001.
[4] I.A. Aliev, S. Sezer and M. Eryiğit, An integral transform associated to the Poisson
integral and inversion of Flett potentials, J. Math. Anal. Appl. 321, 691–704, 2006.
[5] I.A. Aliev, B. Rubin, S. Sezer and S.B. Uyhan, Composite Wavelet Transforms:
Aplications and Perspectives, Contemp. Math. AMS, 464, 1–27, 2008.
[6] V.Balakrishnan , Fractional powers of closed operators and the semi-groups generated
by them, Pasific J. Math. 10, 419–437, 1960.
[7] T.M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. Lond. Math.
Soc. 3 (3), 385–451, 1971.
[8] P.I. Lizorkin, Characterization of the spaces $L_{p}^{r}\left( \mathbb{R}^{n}\right) $ in terms of difference singular
integrals, Mat. Sb. (N.S.) 81 (1), 79–91, 1970 (in Russian).
[9] V.A. Nogin, On inversion of Bessel potentials, J. Differential Equations, 18, 1407–
1411, 1982.
[10] V.A. Nogin and B.S. Rubin, Inversion of parabolic potentials with L p-densities, Mat.
Zametki, 39, 831–840, 1986 (in Russian).
[11] B. Rubin, Description and inversion of Bessel potentials by means of hypersingular
integrals with weighted differences, Differ. Uravn. 22 (10), 1805–1818, 1986.
[12] B. Rubin, A method of characterization and inversion of Bessel and Riesz potentials,
Sov. Math. (Iz. VUZ) 30 (5), 78–89, 1986.
[13] B. Rubin, Inversion of potentials on $\mathbb{R}^{n}$ with the aid of Gauss-Weierstrass integrals,
Math. Notes, 41 (1-2), 22–27, 1987. English translation from Math. Zametki 41 (1),
34–42, 1987.
[14] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in
Pure and Applied Mathematics. Longman, Harlow, 1996.
[15] S.G. Samko, Hypersingular integrals and their applications, Izdat., Rostov Univ.,
Rostovon-Don, 1984 (in Russian).
[16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives:
Theory and Applications, Gordon and Breach, Sci. Publ., London, New York, 1993.
[17] S. Sezer and I.A. Aliev, A New Characterization Of The Riesz Potential Spaces With
The Aid Of A Composite Wavelet Transform, J. Math. Anal. Appl. 372, 549–558,
2010.
[18] E. Stein, The characterization of functions arising as potentials, I, Bull. Amer. Math.
Soc. 67 (1), 102–104, 1961.
[19] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton New Jersey, 1970.
[20] E. Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton
Univ. Press, Princeton NJ., 1971.
[21] R.L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions,
Trans. Amer. Math. Soc. 134 (3), 421–435, 1968.
Sezer Evcan, S., Eryiğit, M., & Çobanoğlu, S. (2020). A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics, 49(4), 1405-1413. https://doi.org/10.15672/hujms.489071
AMA
Sezer Evcan S, Eryiğit M, Çobanoğlu S. A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1405-1413. doi:10.15672/hujms.489071
Chicago
Sezer Evcan, Sinem, Melih Eryiğit, and Selim Çobanoğlu. “A Balakrishnan-Rubin Type Hypersingular Integral Operator and Inversion of Flett Potentials”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1405-13. https://doi.org/10.15672/hujms.489071.
EndNote
Sezer Evcan S, Eryiğit M, Çobanoğlu S (August 1, 2020) A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics 49 4 1405–1413.
IEEE
S. Sezer Evcan, M. Eryiğit, and S. Çobanoğlu, “A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1405–1413, 2020, doi: 10.15672/hujms.489071.
ISNAD
Sezer Evcan, Sinem et al. “A Balakrishnan-Rubin Type Hypersingular Integral Operator and Inversion of Flett Potentials”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1405-1413. https://doi.org/10.15672/hujms.489071.
JAMA
Sezer Evcan S, Eryiğit M, Çobanoğlu S. A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. 2020;49:1405–1413.
MLA
Sezer Evcan, Sinem et al. “A Balakrishnan-Rubin Type Hypersingular Integral Operator and Inversion of Flett Potentials”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1405-13, doi:10.15672/hujms.489071.
Vancouver
Sezer Evcan S, Eryiğit M, Çobanoğlu S. A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1405-13.