Akkoç, H. & TaH, D.O. (2002). The simplicity, complexity and complication of the function concept. In Anne D. Cockburn & Elena Nardi (Eds), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 2, 25-32. Norwich: UK.
Akkoç, H. (2003). Students' Understanding of the Core Concept of Function. Unpublished EdD Thesis, University of Warwick,
Akkoç, H. (2005). Fonksiyon kavramının anlaşılması: Ço~ul temsiller ve tanımsal öze\1ikler. E~itim Araştırmalan Dergisi, 20,.14 - 24.
Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the Process Conception of Function, Educational Studies in Mathematics, 23 (3),247-285.
Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S. & Webb, D. (1997). Leaming by Understanding: The Role of Multiple Representations in Leaming Algebra, American Educational Research Journal, 34 (4), 663-689.
Bruckheimer, M., Eylon, B., & Markovits, Z. (1986). Functions Today and Yesterday, For the Leaming of Mathematics, 6 (2), 18-24.
Confrey, J. (1994). Six Approaches to Transformation of Function Using Multi-Representational Software. Proceedings of the 18th Conference of the InternationalGroup for the Psychology of Mathematics Education, University of Lisbon, Portugal, 2, 217-224.
DeMarois, P. McGowen, M.A., ve TaH, D.O. (2oo0b). 'Using the Function Machine as a Cognitive Root', in Proceedings of the Conference of the InternationalGroup for the Psychology of Mathematics Education NA.
DeMarois, P., McGowen, M.A., ve TalI, D.O. (2oo0a). 'The Function Machine as a Cognitive Root for the Function Concept', in Proceedings of the 25th Conference of the InternationalGroup for the Psychology of Mathematics Education , NA.
Dubinsky, E. (1991). Reflexive Abstraction in Advanced Mathematical Thinking. In D. O. Tali (Ed), Advanced Mathematical Thinking, Dordrecht: Kluwer Academic Publishers, 95-123.
Ginsburg, P. H. (1997). Entering the Child's Mind: The Clinicallnterview in Psychological Research and Practice, Cambridge University Press.
Kaput, J.1. (1992). Technologyand Mathematics Education. In D. A. Grouws (Ed) NCTM Handbook of Research on Mathematics Teaching and Learning, 515-556.
Keııer, B.A. ve Hirsch, C. R. (1998). Student Preferences for Representations of Functions. International Journal of Mathematics Education in Science and Technology, 29 (1), 1-17.
Kieran, C. (1994). A FunctionaJ Approach to the Introductionof AIgebra - Some Pros and Cons. In Proceedings of the] 8th InternationalConference on the Psychology of Mathematics Education, i. (1), ]57-175.
Leinhardt, G., Stein, M.K., ve Zaslavsky, O. (1990). Functions, Graphs, and Graphing: Tasks, Leaming and Teaching. Review of Educational Research, 60 (1), ]-64.
Mason, J. (1996). QuaJitative Researching. London: Sage.
National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. Reston: NCTM.
Ögün-Koca, S. A. (2004). Bilgisayar Ortamindaki çogu] Baglantili Gösterimlerin Ögrencilerin Dogrusal İlişkileri Öğrenmeleri Üzerindeki Etkileri, Hacettepe Üniversitesi Egitim Fakültesi Dergisi, sayı 26.
Rosch, E. (1975). 'Cognitive Representations of Semantic Categories', Journal of Experimental Psycho]ogy: General, Vol. 104, No. 3, pp. ]92-233.
Rosch, E. (1978). 'Principles of Categorization' in E. Rosch & B. B. Lloyd (Eds.) Cognition and Categorization, HilJsdale: Lawrrence Erlbaum Associates.
Ross, H.B ve Makin, V.S. (1999). 'Prototype versus Exemplar Models in Cognition' in RJ. Sternberg (Ed) The Nature of Cognition, Massachusetts Institute of Technology, pp. 205-241.
Sfard, A. (1992). Operational Origins of Mathematical Objects and the Quandary of Reification - The Case of Function. In G. Harel, & E. Dubinsky, (Eds) The Concept of Function: Aspects of Epistemology and Pedagogy, MAA, pp. 59-84.
Sierpinska, A. (1992). On understandingthe notionof function. InHarel. G. And Dubinsky, E. (eds.), MAA Notes andReports Series (pp. 25 - 58).
T.C. MilJi Eğitim Bakanlıgı, Talim ve Terbiye Kurulu Başkanlıgı (2005). Orta Öğretim Matematik (9, 10,11 ve 12) Sınıflar Dersi Ögretim Programı, Ankara.
Tali, D.o. ve Vinner, S. (] 981). Concept Image and Concept Definition in Mathematics with Particular Reference to Limİt and Continuity. Educational Studies in Mathematics, Vol. ]2, pp. ]51-169.
Thompson, P. W. (1994). Students, Functions, and the UndergraduateCurriculum. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education, I, CBMS Issues in Mathematics Education, 4, pp. 21-44.
Vinner, S. (]983). Concept Definition Concept Image and the Notion of Function, International Journal for Mathematics Education in Science and Technology, 14 (3), 293-305.
Akkoç, H. & TaH, D.O. (2002). The simplicity, complexity and complication of the function concept. In Anne D. Cockburn & Elena Nardi (Eds), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 2, 25-32. Norwich: UK.
Akkoç, H. (2003). Students' Understanding of the Core Concept of Function. Unpublished EdD Thesis, University of Warwick,
Akkoç, H. (2005). Fonksiyon kavramının anlaşılması: Ço~ul temsiller ve tanımsal öze\1ikler. E~itim Araştırmalan Dergisi, 20,.14 - 24.
Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the Process Conception of Function, Educational Studies in Mathematics, 23 (3),247-285.
Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S. & Webb, D. (1997). Leaming by Understanding: The Role of Multiple Representations in Leaming Algebra, American Educational Research Journal, 34 (4), 663-689.
Bruckheimer, M., Eylon, B., & Markovits, Z. (1986). Functions Today and Yesterday, For the Leaming of Mathematics, 6 (2), 18-24.
Confrey, J. (1994). Six Approaches to Transformation of Function Using Multi-Representational Software. Proceedings of the 18th Conference of the InternationalGroup for the Psychology of Mathematics Education, University of Lisbon, Portugal, 2, 217-224.
DeMarois, P. McGowen, M.A., ve TaH, D.O. (2oo0b). 'Using the Function Machine as a Cognitive Root', in Proceedings of the Conference of the InternationalGroup for the Psychology of Mathematics Education NA.
DeMarois, P., McGowen, M.A., ve TalI, D.O. (2oo0a). 'The Function Machine as a Cognitive Root for the Function Concept', in Proceedings of the 25th Conference of the InternationalGroup for the Psychology of Mathematics Education , NA.
Dubinsky, E. (1991). Reflexive Abstraction in Advanced Mathematical Thinking. In D. O. Tali (Ed), Advanced Mathematical Thinking, Dordrecht: Kluwer Academic Publishers, 95-123.
Ginsburg, P. H. (1997). Entering the Child's Mind: The Clinicallnterview in Psychological Research and Practice, Cambridge University Press.
Kaput, J.1. (1992). Technologyand Mathematics Education. In D. A. Grouws (Ed) NCTM Handbook of Research on Mathematics Teaching and Learning, 515-556.
Keııer, B.A. ve Hirsch, C. R. (1998). Student Preferences for Representations of Functions. International Journal of Mathematics Education in Science and Technology, 29 (1), 1-17.
Kieran, C. (1994). A FunctionaJ Approach to the Introductionof AIgebra - Some Pros and Cons. In Proceedings of the] 8th InternationalConference on the Psychology of Mathematics Education, i. (1), ]57-175.
Leinhardt, G., Stein, M.K., ve Zaslavsky, O. (1990). Functions, Graphs, and Graphing: Tasks, Leaming and Teaching. Review of Educational Research, 60 (1), ]-64.
Mason, J. (1996). QuaJitative Researching. London: Sage.
National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. Reston: NCTM.
Ögün-Koca, S. A. (2004). Bilgisayar Ortamindaki çogu] Baglantili Gösterimlerin Ögrencilerin Dogrusal İlişkileri Öğrenmeleri Üzerindeki Etkileri, Hacettepe Üniversitesi Egitim Fakültesi Dergisi, sayı 26.
Rosch, E. (1975). 'Cognitive Representations of Semantic Categories', Journal of Experimental Psycho]ogy: General, Vol. 104, No. 3, pp. ]92-233.
Rosch, E. (1978). 'Principles of Categorization' in E. Rosch & B. B. Lloyd (Eds.) Cognition and Categorization, HilJsdale: Lawrrence Erlbaum Associates.
Ross, H.B ve Makin, V.S. (1999). 'Prototype versus Exemplar Models in Cognition' in RJ. Sternberg (Ed) The Nature of Cognition, Massachusetts Institute of Technology, pp. 205-241.
Sfard, A. (1992). Operational Origins of Mathematical Objects and the Quandary of Reification - The Case of Function. In G. Harel, & E. Dubinsky, (Eds) The Concept of Function: Aspects of Epistemology and Pedagogy, MAA, pp. 59-84.
Sierpinska, A. (1992). On understandingthe notionof function. InHarel. G. And Dubinsky, E. (eds.), MAA Notes andReports Series (pp. 25 - 58).
T.C. MilJi Eğitim Bakanlıgı, Talim ve Terbiye Kurulu Başkanlıgı (2005). Orta Öğretim Matematik (9, 10,11 ve 12) Sınıflar Dersi Ögretim Programı, Ankara.
Tali, D.o. ve Vinner, S. (] 981). Concept Image and Concept Definition in Mathematics with Particular Reference to Limİt and Continuity. Educational Studies in Mathematics, Vol. ]2, pp. ]51-169.
Thompson, P. W. (1994). Students, Functions, and the UndergraduateCurriculum. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education, I, CBMS Issues in Mathematics Education, 4, pp. 21-44.
Vinner, S. (]983). Concept Definition Concept Image and the Notion of Function, International Journal for Mathematics Education in Science and Technology, 14 (3), 293-305.
Akkoç, H., & Akkoç, H. (2006). FONKSİYON KAVRAMININ ÇOKLU TEMSİLLERİNİN ÇAĞRIŞTIRDIĞI KAVRAM GÖRÜNTÜLERİ. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(30), 1-10.