BibTex RIS Kaynak Göster

FONKSİYON KAVRAMININ ÇOKLU TEMSİLLERİNİN ÇAĞRIŞTIRDIĞI KAVRAM GÖRÜNTÜLERİ

Yıl 2006, Cilt: 30 Sayı: 30, 1 - 10, 01.06.2006

Kaynakça

  • Akkoç, H. & TaH, D.O. (2002). The simplicity, complexity and complication of the function concept. In Anne D. Cockburn & Elena Nardi (Eds), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 2, 25-32. Norwich: UK.
  • Akkoç, H. (2003). Students' Understanding of the Core Concept of Function. Unpublished EdD Thesis, University of Warwick,
  • Akkoç, H. (2005). Fonksiyon kavramının anlaşılması: Ço~ul temsiller ve tanımsal öze\1ikler. E~itim Araştırmalan Dergisi, 20,.14 - 24.
  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the Process Conception of Function, Educational Studies in Mathematics, 23 (3),247-285.
  • Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S. & Webb, D. (1997). Leaming by Understanding: The Role of Multiple Representations in Leaming Algebra, American Educational Research Journal, 34 (4), 663-689.
  • Bruckheimer, M., Eylon, B., & Markovits, Z. (1986). Functions Today and Yesterday, For the Leaming of Mathematics, 6 (2), 18-24.
  • Confrey, J. (1994). Six Approaches to Transformation of Function Using Multi-Representational Software. Proceedings of the 18th Conference of the InternationalGroup for the Psychology of Mathematics Education, University of Lisbon, Portugal, 2, 217-224.
  • DeMarois, P. McGowen, M.A., ve TaH, D.O. (2oo0b). 'Using the Function Machine as a Cognitive Root', in Proceedings of the Conference of the InternationalGroup for the Psychology of Mathematics Education NA.
  • DeMarois, P., McGowen, M.A., ve TalI, D.O. (2oo0a). 'The Function Machine as a Cognitive Root for the Function Concept', in Proceedings of the 25th Conference of the InternationalGroup for the Psychology of Mathematics Education , NA.
  • Dubinsky, E. (1991). Reflexive Abstraction in Advanced Mathematical Thinking. In D. O. Tali (Ed), Advanced Mathematical Thinking, Dordrecht: Kluwer Academic Publishers, 95-123.
  • Ginsburg, P. H. (1997). Entering the Child's Mind: The Clinicallnterview in Psychological Research and Practice, Cambridge University Press.
  • Kaput, J.1. (1992). Technologyand Mathematics Education. In D. A. Grouws (Ed) NCTM Handbook of Research on Mathematics Teaching and Learning, 515-556.
  • Keııer, B.A. ve Hirsch, C. R. (1998). Student Preferences for Representations of Functions. International Journal of Mathematics Education in Science and Technology, 29 (1), 1-17.
  • Kieran, C. (1994). A FunctionaJ Approach to the Introductionof AIgebra - Some Pros and Cons. In Proceedings of the] 8th InternationalConference on the Psychology of Mathematics Education, i. (1), ]57-175.
  • Leinhardt, G., Stein, M.K., ve Zaslavsky, O. (1990). Functions, Graphs, and Graphing: Tasks, Leaming and Teaching. Review of Educational Research, 60 (1), ]-64.
  • Mason, J. (1996). QuaJitative Researching. London: Sage.
  • National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. Reston: NCTM.
  • Ögün-Koca, S. A. (2004). Bilgisayar Ortamindaki çogu] Baglantili Gösterimlerin Ögrencilerin Dogrusal İlişkileri Öğrenmeleri Üzerindeki Etkileri, Hacettepe Üniversitesi Egitim Fakültesi Dergisi, sayı 26.
  • Rosch, E. (1975). 'Cognitive Representations of Semantic Categories', Journal of Experimental Psycho]ogy: General, Vol. 104, No. 3, pp. ]92-233.
  • Rosch, E. (1978). 'Principles of Categorization' in E. Rosch & B. B. Lloyd (Eds.) Cognition and Categorization, HilJsdale: Lawrrence Erlbaum Associates.
  • Ross, H.B ve Makin, V.S. (1999). 'Prototype versus Exemplar Models in Cognition' in RJ. Sternberg (Ed) The Nature of Cognition, Massachusetts Institute of Technology, pp. 205-241.
  • Sfard, A. (1992). Operational Origins of Mathematical Objects and the Quandary of Reification - The Case of Function. In G. Harel, & E. Dubinsky, (Eds) The Concept of Function: Aspects of Epistemology and Pedagogy, MAA, pp. 59-84.
  • Sierpinska, A. (1992). On understandingthe notionof function. InHarel. G. And Dubinsky, E. (eds.), MAA Notes andReports Series (pp. 25 - 58).
  • T.C. MilJi Eğitim Bakanlıgı, Talim ve Terbiye Kurulu Başkanlıgı (2005). Orta Öğretim Matematik (9, 10,11 ve 12) Sınıflar Dersi Ögretim Programı, Ankara.
  • Tali, D.o. ve Vinner, S. (] 981). Concept Image and Concept Definition in Mathematics with Particular Reference to Limİt and Continuity. Educational Studies in Mathematics, Vol. ]2, pp. ]51-169.
  • Thompson, P. W. (1994). Students, Functions, and the UndergraduateCurriculum. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education, I, CBMS Issues in Mathematics Education, 4, pp. 21-44.
  • Vinner, S. (]983). Concept Definition Concept Image and the Notion of Function, International Journal for Mathematics Education in Science and Technology, 14 (3), 293-305.
Yıl 2006, Cilt: 30 Sayı: 30, 1 - 10, 01.06.2006

Kaynakça

  • Akkoç, H. & TaH, D.O. (2002). The simplicity, complexity and complication of the function concept. In Anne D. Cockburn & Elena Nardi (Eds), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 2, 25-32. Norwich: UK.
  • Akkoç, H. (2003). Students' Understanding of the Core Concept of Function. Unpublished EdD Thesis, University of Warwick,
  • Akkoç, H. (2005). Fonksiyon kavramının anlaşılması: Ço~ul temsiller ve tanımsal öze\1ikler. E~itim Araştırmalan Dergisi, 20,.14 - 24.
  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the Process Conception of Function, Educational Studies in Mathematics, 23 (3),247-285.
  • Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S. & Webb, D. (1997). Leaming by Understanding: The Role of Multiple Representations in Leaming Algebra, American Educational Research Journal, 34 (4), 663-689.
  • Bruckheimer, M., Eylon, B., & Markovits, Z. (1986). Functions Today and Yesterday, For the Leaming of Mathematics, 6 (2), 18-24.
  • Confrey, J. (1994). Six Approaches to Transformation of Function Using Multi-Representational Software. Proceedings of the 18th Conference of the InternationalGroup for the Psychology of Mathematics Education, University of Lisbon, Portugal, 2, 217-224.
  • DeMarois, P. McGowen, M.A., ve TaH, D.O. (2oo0b). 'Using the Function Machine as a Cognitive Root', in Proceedings of the Conference of the InternationalGroup for the Psychology of Mathematics Education NA.
  • DeMarois, P., McGowen, M.A., ve TalI, D.O. (2oo0a). 'The Function Machine as a Cognitive Root for the Function Concept', in Proceedings of the 25th Conference of the InternationalGroup for the Psychology of Mathematics Education , NA.
  • Dubinsky, E. (1991). Reflexive Abstraction in Advanced Mathematical Thinking. In D. O. Tali (Ed), Advanced Mathematical Thinking, Dordrecht: Kluwer Academic Publishers, 95-123.
  • Ginsburg, P. H. (1997). Entering the Child's Mind: The Clinicallnterview in Psychological Research and Practice, Cambridge University Press.
  • Kaput, J.1. (1992). Technologyand Mathematics Education. In D. A. Grouws (Ed) NCTM Handbook of Research on Mathematics Teaching and Learning, 515-556.
  • Keııer, B.A. ve Hirsch, C. R. (1998). Student Preferences for Representations of Functions. International Journal of Mathematics Education in Science and Technology, 29 (1), 1-17.
  • Kieran, C. (1994). A FunctionaJ Approach to the Introductionof AIgebra - Some Pros and Cons. In Proceedings of the] 8th InternationalConference on the Psychology of Mathematics Education, i. (1), ]57-175.
  • Leinhardt, G., Stein, M.K., ve Zaslavsky, O. (1990). Functions, Graphs, and Graphing: Tasks, Leaming and Teaching. Review of Educational Research, 60 (1), ]-64.
  • Mason, J. (1996). QuaJitative Researching. London: Sage.
  • National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. Reston: NCTM.
  • Ögün-Koca, S. A. (2004). Bilgisayar Ortamindaki çogu] Baglantili Gösterimlerin Ögrencilerin Dogrusal İlişkileri Öğrenmeleri Üzerindeki Etkileri, Hacettepe Üniversitesi Egitim Fakültesi Dergisi, sayı 26.
  • Rosch, E. (1975). 'Cognitive Representations of Semantic Categories', Journal of Experimental Psycho]ogy: General, Vol. 104, No. 3, pp. ]92-233.
  • Rosch, E. (1978). 'Principles of Categorization' in E. Rosch & B. B. Lloyd (Eds.) Cognition and Categorization, HilJsdale: Lawrrence Erlbaum Associates.
  • Ross, H.B ve Makin, V.S. (1999). 'Prototype versus Exemplar Models in Cognition' in RJ. Sternberg (Ed) The Nature of Cognition, Massachusetts Institute of Technology, pp. 205-241.
  • Sfard, A. (1992). Operational Origins of Mathematical Objects and the Quandary of Reification - The Case of Function. In G. Harel, & E. Dubinsky, (Eds) The Concept of Function: Aspects of Epistemology and Pedagogy, MAA, pp. 59-84.
  • Sierpinska, A. (1992). On understandingthe notionof function. InHarel. G. And Dubinsky, E. (eds.), MAA Notes andReports Series (pp. 25 - 58).
  • T.C. MilJi Eğitim Bakanlıgı, Talim ve Terbiye Kurulu Başkanlıgı (2005). Orta Öğretim Matematik (9, 10,11 ve 12) Sınıflar Dersi Ögretim Programı, Ankara.
  • Tali, D.o. ve Vinner, S. (] 981). Concept Image and Concept Definition in Mathematics with Particular Reference to Limİt and Continuity. Educational Studies in Mathematics, Vol. ]2, pp. ]51-169.
  • Thompson, P. W. (1994). Students, Functions, and the UndergraduateCurriculum. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education, I, CBMS Issues in Mathematics Education, 4, pp. 21-44.
  • Vinner, S. (]983). Concept Definition Concept Image and the Notion of Function, International Journal for Mathematics Education in Science and Technology, 14 (3), 293-305.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

HATİCE Akkoç Bu kişi benim

Hatice Akkoç Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2006
Yayımlandığı Sayı Yıl 2006 Cilt: 30 Sayı: 30

Kaynak Göster

APA Akkoç, H., & Akkoç, H. (2006). FONKSİYON KAVRAMININ ÇOKLU TEMSİLLERİNİN ÇAĞRIŞTIRDIĞI KAVRAM GÖRÜNTÜLERİ. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(30), 1-10.