Araştırma Makalesi
BibTex RIS Kaynak Göster

COVID-19 Hastalarında Total Oksidan ve Antioksidan Düzeylerinin Uzun Vadeli Araştırılması

Yıl 2022, , 176 - 183, 28.04.2022
https://doi.org/10.35440/hutfd.1096787

Öz

Amaç: Koronavirüs hastalığı 2019 (COVID-19), tehlikeli küresel bir pandemi olarak tüm dünyada yüksek morbidite ve mortaliteye yol açmıştır. Oksidatif stres, proteinler, lipitler ve DNA üzerinde güçlü etkilere sahip olup, çeşitli hücresel fonksiyonların bozulmasına neden olmaktadır. Bu nedenle oksidatif stresin; nörodejeneratif, kardiyovasküler hastalıklar, diyabet ve metabolik sendrom gibi birçok hastalığın patogenezinde rol oynadığı gösterilmiştir. COVID-19'da oksidatif stresin olası rolüne dair birçok kanıt bulunmasına rağmen hastalık seyri boyunca nasıl değiştiği bilinmemektedir.
Materyal Metod: Bu çalışmaya hafif, orta ve yüksek semptom gösteren 18 kadın, 25 erkek olmak üzere toplam 43 COVID-19 hastaları dahil edilmiştir. Hastalardan; 15. gün, 30. gün, 45. gün ve 60. gün olmak üzere 4 defa venöz kan örnekleri alınıp; serumlarında MDA, Protein karbonil, total antioksidan ve total oksidan düzeyleri ölçülmüştür.
Bulgular: Erkeklerde 45. ve 60. günlerdeki total antioksidan düzeyleri kadınlara kıyasla istatistiksel olarak anlamlı ölçüde yüksek bulunmuştur (p<0.05). Total oksidan düzeyleri yüksek semptom gösteren hastalarda diğer semtomlara kıyasla istatistiksel olarak anlamlı ölçüde yüksek bulunmuştur (p<0.05). Hastalar yaşlara göre kıyaslandığında ise MDA, PC ve total oksidan düzeyleri 47 yaşının üzerinde olan hastalarda anlamlı ölçüde yüksek bulunmuştur (p<0.05).
Sonuç: COVID-19’un oksidatif strese neden olduğu ve bu durumun membran yapısını bozma, inflamasyon, apoptoz ve semptomların daha şiddetli olmasına neden olacağı kanaatindeyiz. Bu nedenle COVID-19 hastalarına özellikle 47 yaşının üzerindeki erkek hastalarına etkili tedavi stratejilerinden biri olarak antioksidan maddelerin uygulanması önerilebilir.

Destekleyen Kurum

yok

Proje Numarası

yok

Kaynakça

  • Referans1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine. 2020.
  • Referans2. https://www.who.int/health-topics/physical-activity#tab=tab_1.
  • Referans3. Organization WH. World Health Organization coronavirus disease (COVID-19) dashboard. World Health Organization. 2020.
  • Referans4. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & growth factor reviews. 2020;53:25-32.
  • Referans5. Castelli V, Cimini A, Ferri C. Cytokine storm in COVID-19:“when you come out of the storm, you won’t be the same person who walked in”. Frontiers in immunology. 2020:2132.
  • Referans6. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal transduction and targeted therapy. 2020;5(1):1-10.
  • Referans7. Yelin I, Aharony N, Tamar ES, Argoetti A, Messer E, Berenbaum D, et al. Evaluation of COVID-19 RT-qPCR test in multi sample pools. Clinical Infectious Diseases. 2020;71(16):2073-8.
  • Referans8. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of medical research. 2020;51(5):384-7.
  • Referans9. Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology and Medicine. 2020;156:107-12.
  • Referans10. Garrido J, Gaspar A, Garrido EM, Miri R, Tavakkoli M, Pourali S, et al. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie. 2012;94(4):961-7.
  • Referans11. Hadžović-Džuvo A, Valjevac A, Lepara O, Pjanić S, Hadžimuratović A, Mekić A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosnian journal of basic medical sciences. 2014;14(2):56.
  • Referans12. Jones DP. Redefining oxidative stress. Antioxidants & redox signaling. 2006;8(9-10):1865-79.
  • Referans13. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72.
  • Referans14. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical hypotheses. 2020;143:110102.
  • Referans15. Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovascular research. 2007;75(1):29-39.
  • Referans16. Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clinical Immunology. 2020;215:108410.
  • Referans17. Violi F, Oliva A, Cangemi R, Ceccarelli G, Pignatelli P, Carnevale R, et al. Nox2 activation in COVID-19. Redox Biology. 2020;36:101655.
  • Referans18. Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox biology. 2020;32:101500.
  • Referans19. Kubat, G. O., & Şahin, C. (2020). Koronavirüs hastalığı-2019 (COVID-19) Klinik bulguları. Kulak Burun Boğaz ve Baş Boyun Cerrahisi Dergisi, 28, 14-19.
  • Referans20. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37(4):277-85.
  • Referans21. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry. 2005;38(12):1103-11.
  • Referans22. Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatology international. 2008;28(4):317-21.
  • Referans23. Draper HH, Hadley M. [43] Malondialdehyde determination as index of lipid Peroxidation. Methods in enzymology. 1990;186:421-31.
  • Referans24. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, et al. [49] Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology. 1990;186:464-78.
  • Referans25. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020;54:1-7.
  • Referans26. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, et al. Factors associated with oxidative stress in human populations. American journal of epidemiology. 2002;156(3):274-85.
  • Referans27. Miller R, Wentzel A, Richards G. COVID-19: NAD+ deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Medical hypotheses. 2020;144:110044.
  • Referans28. Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Medical hypotheses. 2020;140:109762.
  • Referans29. Cutolo M, Sulli A, Seriolo B, Accardo S, Masi A. Estrogens, the immune response and autoimmunity. Clinical and experimental rheumatology. 1995;13(2):217-26.
  • Referans30. Viña J, Gambini J, García-García FJ, Rodriguez-Mañas L, Borrás C. Role of oestrogens on oxidative stress and inflammation in ageing. Hormone Molecular Biology and Clinical Investigation. 2013;16(2):65-72.
  • Referans31. Moldogazieva, N. T., Mokhosoev, I. M., Mel’nikova, T. I., Porozov, Y. B., & Terentiev, A. A. (2019). Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxidative medicine and cellular longevity, 2019.
  • Referans32. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (albany NY). 2020;12(10):9959.
  • Referans33. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxidants & redox signaling. 2008;10(2):179-206.
  • Referans34. Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine. 2016;100:53-65.
  • Referans35. Guarente L. Calorie restriction and sirtuins revisited. Genes & development. 2013;27(19):2072-85.

Long-Term Investigation of Total Oxidant and Antioxidant Levels in COVID-19 Patients

Yıl 2022, , 176 - 183, 28.04.2022
https://doi.org/10.35440/hutfd.1096787

Öz

Proje Numarası

yok

Kaynakça

  • Referans1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine. 2020.
  • Referans2. https://www.who.int/health-topics/physical-activity#tab=tab_1.
  • Referans3. Organization WH. World Health Organization coronavirus disease (COVID-19) dashboard. World Health Organization. 2020.
  • Referans4. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & growth factor reviews. 2020;53:25-32.
  • Referans5. Castelli V, Cimini A, Ferri C. Cytokine storm in COVID-19:“when you come out of the storm, you won’t be the same person who walked in”. Frontiers in immunology. 2020:2132.
  • Referans6. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal transduction and targeted therapy. 2020;5(1):1-10.
  • Referans7. Yelin I, Aharony N, Tamar ES, Argoetti A, Messer E, Berenbaum D, et al. Evaluation of COVID-19 RT-qPCR test in multi sample pools. Clinical Infectious Diseases. 2020;71(16):2073-8.
  • Referans8. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of medical research. 2020;51(5):384-7.
  • Referans9. Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology and Medicine. 2020;156:107-12.
  • Referans10. Garrido J, Gaspar A, Garrido EM, Miri R, Tavakkoli M, Pourali S, et al. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie. 2012;94(4):961-7.
  • Referans11. Hadžović-Džuvo A, Valjevac A, Lepara O, Pjanić S, Hadžimuratović A, Mekić A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosnian journal of basic medical sciences. 2014;14(2):56.
  • Referans12. Jones DP. Redefining oxidative stress. Antioxidants & redox signaling. 2006;8(9-10):1865-79.
  • Referans13. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72.
  • Referans14. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical hypotheses. 2020;143:110102.
  • Referans15. Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovascular research. 2007;75(1):29-39.
  • Referans16. Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clinical Immunology. 2020;215:108410.
  • Referans17. Violi F, Oliva A, Cangemi R, Ceccarelli G, Pignatelli P, Carnevale R, et al. Nox2 activation in COVID-19. Redox Biology. 2020;36:101655.
  • Referans18. Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox biology. 2020;32:101500.
  • Referans19. Kubat, G. O., & Şahin, C. (2020). Koronavirüs hastalığı-2019 (COVID-19) Klinik bulguları. Kulak Burun Boğaz ve Baş Boyun Cerrahisi Dergisi, 28, 14-19.
  • Referans20. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37(4):277-85.
  • Referans21. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry. 2005;38(12):1103-11.
  • Referans22. Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatology international. 2008;28(4):317-21.
  • Referans23. Draper HH, Hadley M. [43] Malondialdehyde determination as index of lipid Peroxidation. Methods in enzymology. 1990;186:421-31.
  • Referans24. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, et al. [49] Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology. 1990;186:464-78.
  • Referans25. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020;54:1-7.
  • Referans26. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, et al. Factors associated with oxidative stress in human populations. American journal of epidemiology. 2002;156(3):274-85.
  • Referans27. Miller R, Wentzel A, Richards G. COVID-19: NAD+ deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Medical hypotheses. 2020;144:110044.
  • Referans28. Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Medical hypotheses. 2020;140:109762.
  • Referans29. Cutolo M, Sulli A, Seriolo B, Accardo S, Masi A. Estrogens, the immune response and autoimmunity. Clinical and experimental rheumatology. 1995;13(2):217-26.
  • Referans30. Viña J, Gambini J, García-García FJ, Rodriguez-Mañas L, Borrás C. Role of oestrogens on oxidative stress and inflammation in ageing. Hormone Molecular Biology and Clinical Investigation. 2013;16(2):65-72.
  • Referans31. Moldogazieva, N. T., Mokhosoev, I. M., Mel’nikova, T. I., Porozov, Y. B., & Terentiev, A. A. (2019). Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxidative medicine and cellular longevity, 2019.
  • Referans32. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (albany NY). 2020;12(10):9959.
  • Referans33. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxidants & redox signaling. 2008;10(2):179-206.
  • Referans34. Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine. 2016;100:53-65.
  • Referans35. Guarente L. Calorie restriction and sirtuins revisited. Genes & development. 2013;27(19):2072-85.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Şeyda Nur Dağlı 0000-0002-9971-7073

Tuba Özgöçer 0000-0002-4590-1342

Hakim Çelik 0000-0002-7565-3394

Seyhan Taşkın 0000-0002-3322-759X

Abdullah Taşkın 0000-0001-8642-1567

Mehmet Reşat Ceylan 0000-0001-8063-4836

Proje Numarası yok
Yayımlanma Tarihi 28 Nisan 2022
Gönderilme Tarihi 1 Nisan 2022
Kabul Tarihi 13 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

Vancouver Dağlı ŞN, Özgöçer T, Çelik H, Taşkın S, Taşkın A, Ceylan MR. COVID-19 Hastalarında Total Oksidan ve Antioksidan Düzeylerinin Uzun Vadeli Araştırılması. Harran Üniversitesi Tıp Fakültesi Dergisi. 2022;19(1):176-83.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty