Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Human Maxilla and Mandible Trabecular Microstructure with Micro-Computed Tomography

Yıl 2023, , 67 - 73, 27.04.2023
https://doi.org/10.35440/hutfd.1253254

Öz

ÖZ
Amaç: Maksilla ve mandibulanın trabeküler mikromimarisini mikrobilgisayarlı tomografi (mikro-BT) kullanarak değerlendirmek.
Materyal ve metod: Yirmi adet maksiller ve mandibula kadavra örneği, mikro BT kullanılarak tarandı. Numuneler Skyscan 1275® micro-CT sistemi (SkyScan, Kontich, Belçika) kullanılarak aşağıdaki parametrelerle tarandı. Tarama verileri CTan yazılımına aktarıldı ve analiz edildi. Morfometrik parametreler; doku hacmi (DH), Kemik hacmi (KH), kemik hacmi yüzdesi (KH/DH), doku yüzeyi (DY), kemik yüzeyi (KY), kesişme yüzeyi (KY), kemik yüzeyi/hacim oranı (KY/KH), kemik yüzey yoğunluğu (BS/TV), trabeküler patern faktörü (Tb.Pf), yapı modeli indeksi (YMI), trabeküler kalınlık (Tb. Th), trabeküler ayrılma (Tb. Sp), trabeküler sayı (Tb.N) ve anizotropi derecesi (DA), CTAnalyzer yazılımı kullanılarak değerlendirildi. İstatistiksel anlamlılık p<0.05 olarak ayarlandı.
Bulgular: BV/TV, Tb.Th, Tb. KIBT görüntülerinde Sp ve DA değerleri mikro-BT görüntülerine göre daha yüksek iken, Tb. CBCT görüntülerinde N değeri, mikro BT görüntülerinden daha düşüktü. BV/TV ve DA parametreleri, CBCT ve mikro-CT cihazları arasında en yüksek uyumu gösterdi (BV/TV için ICC=0,421 ve DA için ICC=0,439, p<0,01).
Sonuç: En küçük voksel boyutunda elde edilen CBCT'de ölçülen BV/TV ve DA parametrelerinin maksiller trabeküler mikroyapının değerlendirilmesinde yararlı olduğu bulundu.
Anahtar Kelimeler: Mikro bilgisayarlı tomografi, trabeküler kemik mikro yapısı, Maxilla, Mandibula.

Kaynakça

  • 1. Lakatos E, Magyar L, Bojtár I, Material Properties of the Mandibular Trabecular Bone. Journal of Medical Enginee-ring 2014 Article ID 470539 http://dx.doi.org/10.1155/2014/470539
  • 2. Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Wil-helm Neukam F, Engelke K. Implant stability and histo-morphometry: a correlation study in human cadavers using stepped cylinder implants, Clin Oral Implants Res; 2003;14(5):601-9.
  • 3. Miyamoto I, Tsuboi Y, Wada E, Suwa H, Tadahiko Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospecti-ve, biomechanical, and imaging study. Bone. 2005;37( 6): 776-780.
  • 4. Heinemann F, Hasan I, Bourauel C, Biffar R, Mundt T. Bone stability around dental implants: Treatment related factors. 2015, 199;3-8.
  • 5. Javed F, Romanos GE. The role of primary stability for suc-cessful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20
  • 6. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomec-hanical aspects and clinical implications. Periodontol 2008; 47:51–66.
  • 7. Açıkgöz A. K, Morphometric Evaluation, Locational Relati-onship, and Surgical Significance of the Maxillofacial Region Landmarks, ınternatıonal journal of morphology. 2021; 39: 5: 1289-1295.
  • 8. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  • 9. Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE. Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res 2008;10:238–244.
  • 10. Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent 2009;18:480-5.
  • 11. Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoorna-ert A, Layrolle P. Correlating implant stability to bone struc-ture. Clin Oral Implants Res 2009;20:1140-5.
  • 12. Se-Ryong Kang, Sung-Chul Bok , Soon-Chul Choi , Sam-Sun Lee , Min-Suk Heo, Kyung-Hoe Huh et all. The relationship between dental implant stability and trabecular bone struc-ture using cone-beam computed tomography,J Periodontal Implant Sci, 2016;46(2):116-27.
  • 13. Hsu JT, Huang HL, Tsai MT, Wu AY, Tu MG, Fuh LJ. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses. Int J Oral Maxillofac Surg 2013;42:276-80.
  • 14. Moon HS, Won YY, Kim JY. KD, Ruprecht A. HJ, Kook HK et all. The three-dimensional microstructure of the trabecular bone in the mandible, Surg Radiol Anat., 2004; 26: 466–73.
  • 15. Akca K., Chang T L., Tekdemir İ., Fanuscu Mete I. Biomec-hanical aspects of initial intraosseous stability and implant design: a quantitative micromorphometric analysis. Clin. Oral Impl. Res., 2006; 17: 465–72.
  • 16. Kulah K., Gulsahi A., Kamburoğlu K., Geneci F., Ocak M., Celik H H., Ozen T, Evaluation of maxillary trabecular mic-rostructure as an indicator of implant stability by using 2 co-ne beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiology, 2019;127(3):247-256
  • 17. Raúl González‐García., Monje F., The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro‐CT, Clin. Oral Impl. Res., 2013; 24: 871–879.
  • 18. Panmekiate S., Ngonphloy N., Charoenkarn T., Faruang-saeng T., Pauwels R., Comparison of mandibular bone mic-roarchitecture between micro-CT and CBCT images, Den-tomaxillofac. Radiol, 2015;44:1-7.
  • 19. Parsa A, Ibrahim N, Hassan B, Stelt PVD, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clinical oral Implants rese-arch, 2015; 26(1)1-7. https://doi.org/10.1111/clr.12315
  • 20. Fanuscu M.I, Chang T L, Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible, Clin. Oral Impl. Res., 2004; 15: 213–218.
  • 21. Oliveira De, Leles CR, Lindh C, Ribeiro Rotta RF. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: Identification of clinical related parameters. Clin. Oral Impl. Res. 2012; 23; 981–986 doi: 10.1111/j.1600-0501.2011.02243.x
  • 22. Blok Y, Gravesteijn FA, Ruijven LJV, Koolstra JH. Micro-architecture and mineralization of the human alveolar bone obtained with microCT. archives of oral biology, 2013: 58; 621–627.
  • 23. Kim JY, Henkin J., Micro-Computed Tomography Assess-ment of Human Alveolar Bone: Bone Density and Three-Dimensional Micro-Architecture, Clinical Implant Dentistry and Related Research, 2015; 17 (2): 307-313.
  • 24. Luu N. S, Mandich MA, Flores-Mir C, El-Bialy T, Heo G, Carey JP, Major P.W.. The validity, reliability, and time requirement of study model analysis using cone-beam computed tomography–generated virtual study models. Orthodontics Craniofacial, 2013; 17(1); 14-26 https://doi.org/10.1111/ocr.12024
  • 25. Vinci R, Rebaudi A, Capparè P, Gherlone E. Microcomputed and histologic evaluation of calvarial bone grafts: a pilot study in humans, Int J Periodontics Restorative Dent, 2011;31(4):29-36.
  • 26. Jiang Y, Zhao J, Liao EY, Dai RC, Wu XP, Genant HK. Applica-tion of micro-CT assessment of 3-D bone micro-structure in preclinical and clinical studies. J Bone Miner Metab 2005; 23:122–131.
  • 27. Ito M. Assessment of bone quality using micro-computed tomography (micro-CT) and synchrotron micro-CT. J Bone Miner Metab 2005; 23(Suppl):115–121.
  • 28. Stauber M, Müller R. Micro-computed tomography: a met-hod for the non-destructive evaluation of the three-dimensional structure of biological specimens. In: Westen-dorf J, ed. Methods in molecular biology, osteoporosis: methods and protocols methods in molecular biology. To-towa, NJ: Humana Press, 2008:273–292.
  • 29. Ding M., Hvid I, Quantification of age-related changes in the structure model type and trabecular thickness of human ti-bial cancellous bone. Bone, 2000; 26:291–295.

İnsan Maksilla ve Mandibula Trabeküler Mikro Yapısının Mikro Bilgisayarlı Tomografi ile İncelenmesi

Yıl 2023, , 67 - 73, 27.04.2023
https://doi.org/10.35440/hutfd.1253254

Öz

ÖZ
Amaç: Maksilla ve mandibulanın trabeküler mikromimarisini mikrobilgisayarlı tomografi (mikro-BT) kullanarak değerlendirmek.
Materyal ve metod: Yirmi adet maksiller ve mandibula kadavra örneği, mikro BT kullanılarak tarandı. Numuneler Skyscan 1275® micro-CT sistemi (SkyScan, Kontich, Belçika) kullanılarak aşağıdaki parametrelerle tarandı. Tarama verileri CTan yazılımına aktarıldı ve analiz edildi. Morfometrik parametreler; doku hacmi (DH), Kemik hacmi (KH), kemik hacmi yüzdesi (KH/DH), doku yüzeyi (DY), kemik yüzeyi (KY), kesişme yüzeyi (KY), kemik yüzeyi/hacim oranı (KY/KH), kemik yüzey yoğunluğu (BS/TV), trabeküler patern faktörü (Tb.Pf), yapı modeli indeksi (YMI), trabeküler kalınlık (Tb. Th), trabeküler ayrılma (Tb. Sp), trabeküler sayı (Tb.N) ve anizotropi derecesi (DA), CTAnalyzer yazılımı kullanılarak değerlendirildi. İstatistiksel anlamlılık p<0.05 olarak ayarlandı.
Bulgular: BV/TV, Tb.Th, Tb. KIBT görüntülerinde Sp ve DA değerleri mikro-BT görüntülerine göre daha yüksek iken, Tb. CBCT görüntülerinde N değeri, mikro BT görüntülerinden daha düşüktü. BV/TV ve DA parametreleri, CBCT ve mikro-CT cihazları arasında en yüksek uyumu gösterdi (BV/TV için ICC=0,421 ve DA için ICC=0,439, p<0,01).
Sonuç: En küçük voksel boyutunda elde edilen CBCT'de ölçülen BV/TV ve DA parametrelerinin maksiller trabeküler mikroyapının değerlendirilmesinde yararlı olduğu bulundu.

Kaynakça

  • 1. Lakatos E, Magyar L, Bojtár I, Material Properties of the Mandibular Trabecular Bone. Journal of Medical Enginee-ring 2014 Article ID 470539 http://dx.doi.org/10.1155/2014/470539
  • 2. Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Wil-helm Neukam F, Engelke K. Implant stability and histo-morphometry: a correlation study in human cadavers using stepped cylinder implants, Clin Oral Implants Res; 2003;14(5):601-9.
  • 3. Miyamoto I, Tsuboi Y, Wada E, Suwa H, Tadahiko Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospecti-ve, biomechanical, and imaging study. Bone. 2005;37( 6): 776-780.
  • 4. Heinemann F, Hasan I, Bourauel C, Biffar R, Mundt T. Bone stability around dental implants: Treatment related factors. 2015, 199;3-8.
  • 5. Javed F, Romanos GE. The role of primary stability for suc-cessful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20
  • 6. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomec-hanical aspects and clinical implications. Periodontol 2008; 47:51–66.
  • 7. Açıkgöz A. K, Morphometric Evaluation, Locational Relati-onship, and Surgical Significance of the Maxillofacial Region Landmarks, ınternatıonal journal of morphology. 2021; 39: 5: 1289-1295.
  • 8. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  • 9. Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE. Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res 2008;10:238–244.
  • 10. Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent 2009;18:480-5.
  • 11. Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoorna-ert A, Layrolle P. Correlating implant stability to bone struc-ture. Clin Oral Implants Res 2009;20:1140-5.
  • 12. Se-Ryong Kang, Sung-Chul Bok , Soon-Chul Choi , Sam-Sun Lee , Min-Suk Heo, Kyung-Hoe Huh et all. The relationship between dental implant stability and trabecular bone struc-ture using cone-beam computed tomography,J Periodontal Implant Sci, 2016;46(2):116-27.
  • 13. Hsu JT, Huang HL, Tsai MT, Wu AY, Tu MG, Fuh LJ. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses. Int J Oral Maxillofac Surg 2013;42:276-80.
  • 14. Moon HS, Won YY, Kim JY. KD, Ruprecht A. HJ, Kook HK et all. The three-dimensional microstructure of the trabecular bone in the mandible, Surg Radiol Anat., 2004; 26: 466–73.
  • 15. Akca K., Chang T L., Tekdemir İ., Fanuscu Mete I. Biomec-hanical aspects of initial intraosseous stability and implant design: a quantitative micromorphometric analysis. Clin. Oral Impl. Res., 2006; 17: 465–72.
  • 16. Kulah K., Gulsahi A., Kamburoğlu K., Geneci F., Ocak M., Celik H H., Ozen T, Evaluation of maxillary trabecular mic-rostructure as an indicator of implant stability by using 2 co-ne beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiology, 2019;127(3):247-256
  • 17. Raúl González‐García., Monje F., The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro‐CT, Clin. Oral Impl. Res., 2013; 24: 871–879.
  • 18. Panmekiate S., Ngonphloy N., Charoenkarn T., Faruang-saeng T., Pauwels R., Comparison of mandibular bone mic-roarchitecture between micro-CT and CBCT images, Den-tomaxillofac. Radiol, 2015;44:1-7.
  • 19. Parsa A, Ibrahim N, Hassan B, Stelt PVD, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clinical oral Implants rese-arch, 2015; 26(1)1-7. https://doi.org/10.1111/clr.12315
  • 20. Fanuscu M.I, Chang T L, Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible, Clin. Oral Impl. Res., 2004; 15: 213–218.
  • 21. Oliveira De, Leles CR, Lindh C, Ribeiro Rotta RF. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: Identification of clinical related parameters. Clin. Oral Impl. Res. 2012; 23; 981–986 doi: 10.1111/j.1600-0501.2011.02243.x
  • 22. Blok Y, Gravesteijn FA, Ruijven LJV, Koolstra JH. Micro-architecture and mineralization of the human alveolar bone obtained with microCT. archives of oral biology, 2013: 58; 621–627.
  • 23. Kim JY, Henkin J., Micro-Computed Tomography Assess-ment of Human Alveolar Bone: Bone Density and Three-Dimensional Micro-Architecture, Clinical Implant Dentistry and Related Research, 2015; 17 (2): 307-313.
  • 24. Luu N. S, Mandich MA, Flores-Mir C, El-Bialy T, Heo G, Carey JP, Major P.W.. The validity, reliability, and time requirement of study model analysis using cone-beam computed tomography–generated virtual study models. Orthodontics Craniofacial, 2013; 17(1); 14-26 https://doi.org/10.1111/ocr.12024
  • 25. Vinci R, Rebaudi A, Capparè P, Gherlone E. Microcomputed and histologic evaluation of calvarial bone grafts: a pilot study in humans, Int J Periodontics Restorative Dent, 2011;31(4):29-36.
  • 26. Jiang Y, Zhao J, Liao EY, Dai RC, Wu XP, Genant HK. Applica-tion of micro-CT assessment of 3-D bone micro-structure in preclinical and clinical studies. J Bone Miner Metab 2005; 23:122–131.
  • 27. Ito M. Assessment of bone quality using micro-computed tomography (micro-CT) and synchrotron micro-CT. J Bone Miner Metab 2005; 23(Suppl):115–121.
  • 28. Stauber M, Müller R. Micro-computed tomography: a met-hod for the non-destructive evaluation of the three-dimensional structure of biological specimens. In: Westen-dorf J, ed. Methods in molecular biology, osteoporosis: methods and protocols methods in molecular biology. To-towa, NJ: Humana Press, 2008:273–292.
  • 29. Ding M., Hvid I, Quantification of age-related changes in the structure model type and trabecular thickness of human ti-bial cancellous bone. Bone, 2000; 26:291–295.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Handan Soysal 0000-0001-7550-6362

Ferhat Geneci 0000-0002-5039-4664

Mert Ocak 0000-0001-6832-6208

Erken Görünüm Tarihi 27 Nisan 2023
Yayımlanma Tarihi 27 Nisan 2023
Gönderilme Tarihi 19 Şubat 2023
Kabul Tarihi 20 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

Vancouver Soysal H, Geneci F, Ocak M. Investigation of the Human Maxilla and Mandible Trabecular Microstructure with Micro-Computed Tomography. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(1):67-73.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty