Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Neurodegenerative and Microvascular Changes in Branch Retinal Vein Occlusion After Regression of the Macular Edema

Yıl 2020, , 406 - 411, 25.12.2020
https://doi.org/10.35440/hutfd.808901

Öz

Background: To evaluate the quadrantal effect of branch retinal vein occlusion (BRVO) on retinal microvasculature and ganglion cell-internal plexiform layer thickness (GC-IPL)
Materials and Methods: This retrospective study included 62 eyes of 31 patients diagnosed with unilateral BRVO. Participants had optical coherence tomography (OCT) and OCT angiography (OCTA) analyses after complete regression of the macular edema. The macular central subfield thickness (CST), GC-IPL thickness, vessel and perfusion density (VD and PD), and foveal avascular zone (FAZ) area of the superficial capillary plexus (SCP) were evaluated in both groups. We also compared the affected and opposite unaffected quadrant measurements in BRVO eyes with the corresponding quadrant to BRVO (BRVO-corresponding) in the fellow eye.
Results: The mean FAZ area, VD, and PD of SCP demonstrated no significant difference between BRVO and fellow eyes of BRVO (p>0.05 all). The mean GC-IPL thickness, the mean VD of the parafoveal and perifoveal ring, and mean PD of the perifoveal ring were significantly decreased in the affected quadrant of BRVO eyes (p<0.05 all). In the post hoc tests, the VD of the parafoveal and perifoveal ring was significantly lower in the affected quadrant than the unaffected and BRVO-corresponding quadrant (p<0.05 all). A post hoc analysis revealed that the PD was significantly lower in the affected quadrant than the unaffected and BRVO-corresponding quadrant (p=0.017, p=0.025).
Conclusions: The microvascular changes in the macular superficial capillary plexus accompany significant ganglion cell loss in BRVO. The microvascular and microstructural alterations were mainly localized to the distribution area of the occluded vein.

Key Words: Retinal blood vessels, Retinal vein occlusion, Macular edema

Kaynakça

  • 1. Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P,et al. International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010 Feb;117(2):313-9.e1.
  • 2. Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013 May;33(5):901-10.
  • 3. Noma H, Yasuda K, Shimura M. Cytokines and the pathogenesis of macular edema in branch retinal vein occlusion. J Ophthalmol. 2019 May 2;2019:5185128.
  • 4. Jumper JM, Dugel PU, Chen S, Blinder KJ, Walt JG. Anti-VEGF treatment of macular edema associated with retinal vein occlusion: patterns of use and effectiveness in clinical practice (ECHO study report 2). Clin Ophthalmol. 2018 Apr 3;12:621-629.
  • 5. Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2008 Dec;2(4):879-89.
  • 6. Alshareef RA, Barteselli G, You Q, Goud A, Jabeen A, Rao H, et al. In vivo evaluation of retinal ganglion cells degeneration in eyes with branch retinal vein occlusion. Br J Ophthalmol. 2016;100(11):1506‐1510.
  • 7. Kim CS, Shin KS, Lee HJ, Jo YJ, Kim JY. Quadrantal retinal nerve fiber layer thinning in branch retinal vein occlusion. Retina. 2014;34(3):525‐530.
  • 8. Kim HJ, Yoon HG, Kim ST. Correlation between macular ganglion cell-parafoveal plexiform layer thickness and visual acuity after resolution of the macular edema secondary to central retinal vein occlusion. Int J Ophthalmol. 2018;11(2):256–261.
  • 9. Hayreh SS: Retinal vein occlusion. Indian Ophthalmol. 1994; 42(3):109-132.
  • 10. Balaratnasingam C, Mendis KR, Yu P, Barry CJ, McAllister IL, Cringle SJ, et al. Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest Ophthalmol Vis Sci. 2010; 51:5864–5869.
  • 11. Koulisis N, Kim AY, Chu Z, Shahidzadeh A, Burkemper B, Olmos de Koo LC, et al. Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One. 2017;12:e0176404.
  • 12. Janaky M, Grósz A, Tóth E, Benedek K, Benedek G. Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol 2007;114:45–51.
  • 13. Lee YH, Kim MS, Ahn SI, Park HJ, Shin KS, Kim JY. Repeatability of ganglion cell-parafoveal plexiform layer thickness measurements using spectral-domain OCT in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2017 Sep;255(9):1727-1735.
  • 14. Lim HB, Kim MS, Jo YJ, Kim JY. Prediction of Retinal Ischemia in Branch Retinal Vein Occlusion: Spectral-Domain Optical Coherence Tomography Study. Invest Ophthalmol Vis Sci. 2015;56(11):6622‐6629.
  • 15. Mastropasqua R, Toto L, Di Antonio L, Borrelli E, Senatore A, Di Nicola M, et al. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions. Sci Rep. 2017;7:40763.
  • 16. Suzuki N, Hirano Y, Yoshida M, Tomiyasu T, Uemura A, Yasukawa T, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2016 Jan;161:126-32.
  • 17. Adhi M, Filho MA, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT486–OCT494.
  • 18. Zheng Y, Gandhi JS, Stangos AN, Campa C, Broadbent DM, Harding SP. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010;51(7):3653–3659.
  • 19. Tan CS, Lim LW, Cheong KX, Chow VS, Chay IW, Tan S. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:201–202.
  • 20. Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016 Jun;166:76-83.
  • 21. Manabe S, Osaka R, Nakano Y, Takasago Y, Fujita T, Shiragami C, et al. Association between parafoveal capillary nonperfusion and macular function in eyes with branch retinal vein occlusion. Retina. 2017 Sep;37(9):1731-1737.
  • 22. Brar M, Sharma M, Grewal SPS, Grewal DS. Quantification of retinal microvasculature and neurodegeneration changes in branch retinal vein occlusion after resolution of cystoid macular edema on optical coherence tomography angiography. Indian J Ophthalmol. 2019;67(11):1864–1869.

Retinal Ven Dal Tıkanıklığında Makula Ödeminin Gerilemesi Sonrası Mikrovasküler ve Nörodejeneratif Değişikliklerin İncelenmesi

Yıl 2020, , 406 - 411, 25.12.2020
https://doi.org/10.35440/hutfd.808901

Öz

Amaç: Retinal ven dal tıkanıklığının (RVDT) makuler mikrovasküler yapı ve ganglion hücre-iç pleksiform tabaka (GC-IPL) kalınlığı üzerindeki sektöryel etkilerini araştırmak.
Materyal ve Metod: Bu retrospektif çalışmaya, RVDT tanılı 31 olgunun hastalıktan etkilenen ve sağlıklı gözleri olmak üzere 62 göz dahil edildi. Olguların makula ödeminin gerilemesini takiben optik koherens tomografi (OKT) ve optik koherens tomografi anjiyografi (OKTA) ile görüntülemeleri yapıldı. İki grupta, santral makuler kalınlık, GC-IPL kalınlığı, yüzeyel kapiller pleksusun (SCP) damar yoğunluğu (VD), perfüzyon yoğunluğu (PD) ve foveal avasküler zon (FAZ) alanı analizi yapıldı. RVDT’li gözlerde etkilenen sektör ve etkilenmeyen sektörün ölçümleri hesaplanarak, sağlıklı gözlerde RVDT ile yöndeş (RVDT-yöndeş) olan sektöre ait ölçümlerle karşılaştırıldı.
Bulgular: RVDT’li gözler ve sağlıklı diğer gözleri arasında ortalama FAZ alanı açısından istatisitksel olarak anlamlı fark bulunmadı. SCP’nin VD ve PD ölçümleri açısından olguların RVDT’li ve diğer gözleri arasında istatistiksel olarak anlamlı fark bulunmadı. Ortalama GC-IPL kalınlığı, iç ve dış halka VD ve dış halka PD değerleri RVDT’li gözlerde istatistiksel olarak anlamlı düşüktü (p<0,05). Post-hoc analizlerde, iç ve dış halka VD ölçümleri etkilenen sektörde, etkilenmeyen sektör ve RVDT ile yöndeş sektöre göre istatistiksel olarak anlamlı düşüktü (p<0,05). Post-hoc analizine göre PD ölçümleri etkilenen sektörde, etkilenmeyen ve RVDT ile yöndeş sektöre göre istatisitksel olarak anlamlı düşük saptandı (p<0.05).
Sonuç: Maküler yüzeyel pleksustaki mikrovasküler değişiklikler, BRVO'da anlamlı ganglion hücre kaybına eşlik eder. Mikrovasküler ve mikroyapısal değişiklikler esas olarak tıkanmış damarın dağılım alanına lokalizedir.

Kaynakça

  • 1. Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P,et al. International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010 Feb;117(2):313-9.e1.
  • 2. Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013 May;33(5):901-10.
  • 3. Noma H, Yasuda K, Shimura M. Cytokines and the pathogenesis of macular edema in branch retinal vein occlusion. J Ophthalmol. 2019 May 2;2019:5185128.
  • 4. Jumper JM, Dugel PU, Chen S, Blinder KJ, Walt JG. Anti-VEGF treatment of macular edema associated with retinal vein occlusion: patterns of use and effectiveness in clinical practice (ECHO study report 2). Clin Ophthalmol. 2018 Apr 3;12:621-629.
  • 5. Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2008 Dec;2(4):879-89.
  • 6. Alshareef RA, Barteselli G, You Q, Goud A, Jabeen A, Rao H, et al. In vivo evaluation of retinal ganglion cells degeneration in eyes with branch retinal vein occlusion. Br J Ophthalmol. 2016;100(11):1506‐1510.
  • 7. Kim CS, Shin KS, Lee HJ, Jo YJ, Kim JY. Quadrantal retinal nerve fiber layer thinning in branch retinal vein occlusion. Retina. 2014;34(3):525‐530.
  • 8. Kim HJ, Yoon HG, Kim ST. Correlation between macular ganglion cell-parafoveal plexiform layer thickness and visual acuity after resolution of the macular edema secondary to central retinal vein occlusion. Int J Ophthalmol. 2018;11(2):256–261.
  • 9. Hayreh SS: Retinal vein occlusion. Indian Ophthalmol. 1994; 42(3):109-132.
  • 10. Balaratnasingam C, Mendis KR, Yu P, Barry CJ, McAllister IL, Cringle SJ, et al. Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest Ophthalmol Vis Sci. 2010; 51:5864–5869.
  • 11. Koulisis N, Kim AY, Chu Z, Shahidzadeh A, Burkemper B, Olmos de Koo LC, et al. Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One. 2017;12:e0176404.
  • 12. Janaky M, Grósz A, Tóth E, Benedek K, Benedek G. Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol 2007;114:45–51.
  • 13. Lee YH, Kim MS, Ahn SI, Park HJ, Shin KS, Kim JY. Repeatability of ganglion cell-parafoveal plexiform layer thickness measurements using spectral-domain OCT in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2017 Sep;255(9):1727-1735.
  • 14. Lim HB, Kim MS, Jo YJ, Kim JY. Prediction of Retinal Ischemia in Branch Retinal Vein Occlusion: Spectral-Domain Optical Coherence Tomography Study. Invest Ophthalmol Vis Sci. 2015;56(11):6622‐6629.
  • 15. Mastropasqua R, Toto L, Di Antonio L, Borrelli E, Senatore A, Di Nicola M, et al. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions. Sci Rep. 2017;7:40763.
  • 16. Suzuki N, Hirano Y, Yoshida M, Tomiyasu T, Uemura A, Yasukawa T, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2016 Jan;161:126-32.
  • 17. Adhi M, Filho MA, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT486–OCT494.
  • 18. Zheng Y, Gandhi JS, Stangos AN, Campa C, Broadbent DM, Harding SP. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010;51(7):3653–3659.
  • 19. Tan CS, Lim LW, Cheong KX, Chow VS, Chay IW, Tan S. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:201–202.
  • 20. Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016 Jun;166:76-83.
  • 21. Manabe S, Osaka R, Nakano Y, Takasago Y, Fujita T, Shiragami C, et al. Association between parafoveal capillary nonperfusion and macular function in eyes with branch retinal vein occlusion. Retina. 2017 Sep;37(9):1731-1737.
  • 22. Brar M, Sharma M, Grewal SPS, Grewal DS. Quantification of retinal microvasculature and neurodegeneration changes in branch retinal vein occlusion after resolution of cystoid macular edema on optical coherence tomography angiography. Indian J Ophthalmol. 2019;67(11):1864–1869.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Şehnaz Özçalışkan 0000-0002-3783-3570

Yasin Özcan 0000-0003-4536-1785

Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 11 Ekim 2020
Kabul Tarihi 25 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

Vancouver Özçalışkan Ş, Özcan Y. Evaluation of Neurodegenerative and Microvascular Changes in Branch Retinal Vein Occlusion After Regression of the Macular Edema. Harran Üniversitesi Tıp Fakültesi Dergisi. 2020;17(3):406-11.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty