Araştırma Makalesi
BibTex RIS Kaynak Göster

Aerobik Egzersiz Yoğunluğunun ve Kreatin Monohidrat Takviyesinin Fare Kardiyak Ventrikül Kas Dokusunda Enerji Metabolizması Biyobelirteçleri Üzerindeki Sinerjitik Etkisi

Yıl 2024, Cilt: 21 Sayı: 3, 469 - 475, 27.12.2024
https://doi.org/10.35440/hutfd.1573754

Öz

Amaç: Kreatin monohidrat (CrM) takviyesinin ve farklı yoğunluktaki aerobik egzersizin farelerin kardiyak ventriküler kas dokusundaki enerji metabolizmasının temel biyobelirteçleri üzerindeki kombine etkile-rini araştırmaktır.
Materyal ve Metod: Kırk iki erkek BALB/c faresi rastgele altı gruba ayrıldı (grup başına n=7): kontrol (C), CrM takviyesi (C+CrM), düşük yoğunluklu egzersiz (LIE), CrM takviyesiyle LIE (LIE+CrM), yüksek yoğunluklu egzersiz (HIE) ve CrM takviyesiyle HIE (HIE+CrM). Sekiz hafta boyunca, egzersiz grupları haftada beş gün koşu bandında egzersiz uygulanırken, CrM grupları %4 CrM ile zenginleştirilmiş bir diyet aldı. Anahtar biyobelirteçler; miyosit güçlendirici faktör 2A (MEF2A), monokarboksilat taşıyıcı 1 (MCT1), pirüvat dehi-drogenaz (PDH), peroksisom proliferatör aktive reseptör gama koaktivatör 1-alfa (PGC-1α) ve mitokondri-yal transkripsiyon faktörü A (TFAM) ELISA testleri kullanılarak kardiyak ventriküler kas dokusunda kantifize edildi.
Bulgular: LIE+CrM grubu, C+CrM grubuna kıyasla MEF2A'da önemli bir artış gösterdi (p<0,05). PDH seviye-leri, hem LIE+CrM hem de HIE+CrM gruplarında, C ve C+CrM gruplarına kıyasla önemli ölçüde daha yüksekti (p<0,05). PGC-1α seviyeleri, LIE+CrM grubunda en yüksekti ve istatistiksel anlamlılığa yaklaşıyor-du (p=0,051). TFAM ekspresyonu, LIE+CrM grubunda, LIE, HIE ve C+CrM gruplarına kıyasla önemli ölçüde yüksekti (p<0,05). MCT1 seviyeleri, LIE+CrM grubunda anlamlı olmayan bir artış eğilimi gösterdi.
Sonuç: Düşük yoğunluklu aerobik egzersizle birleştirilen CrM takviyesi, kardiyak ventriküler kas dokusun-da mitokondriyal biyogenez ve enerji metabolizmasıyla ilişkili temel biyobelirteçleri önemli ölçüde artırır. Bu bulgular, kardiyak enerji metabolizmasını optimize edebilecek ve kardiyovasküler sağlığı iyileş-tirebilecek sinerjik bir etkiye işaret ediyor.

Proje Numarası

-

Kaynakça

  • 1. Tuomainen T, Tavi P. The role of cardiac energy metabo-lism in cardiac hypertrophy and failure. Experimental Cell Research. 2017;360(1):12-18.
  • 2. Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, et al. Mitochondria and cardio-vascular diseases—from pathophysiology to treatment. Ann Transl Med. 2018;6(12):256.
  • 3. Kuznetsov A V., Javadov S, Margreiter R, Grimm M, Ha-genbuchner J, Ausserlechner MJ. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants. 2019;8(10):454.
  • 4. Kunkel GH, Chaturvedi P, Tyagi SC. Mitochondrial pathways to cardiac recovery: TFAM. Heart Fail Rev. 2016;21(5):499-517.
  • 5. Lim AY, Chen YC, Hsu CC, Fu TC, Wang JS. The Effects of Exercise Training on Mitochondrial Function in Cardiovas-cular Diseases: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2022;23:12559.
  • 6. Smiles WJ, Camera DM. More than mitochondrial bioge-nesis: Alternative roles of PGC-1α in exercise adaptation. Journal of Physiology. 2015;593(9):2115-2117.
  • 7. Li L, Mühlfeld C, Niemann B, Pan R, Li R, Hilfiker-Kleiner D, et al. Mitochondrial biogenesis and PGC-1α deacetyla-tion by chronic treadmill exercise: Differential response in cardiac and skeletal muscle. Basic Res Cardiol. 2011;106(6):1221-1234.
  • 8. Taskin S, Celik H, Demiryurek S, Turedi S, Taskin A. Effects of different-intensity exercise and creatine supplementa-tion on mitochondrial biogenesis and redox status in mice. Iran J Basic Med Sci. 2022;26(8):1009-1015.
  • 9. Gowayed M, Mahmoud S, El Sayed Y, Abu Samra N, Kamel M. Enhanced mitochondrial biogenesis is associa-ted with the ameliorative action of creatine supplementa-tion in rat soleus and cardiac muscles. Exp Ther Med. 2020;19(1):384-392.
  • 10. Casey A, Greenhaff PL. Does dietary creatine supplemen-tation play a role in skeletal muscle metabolism and per-formance? In: American Journal of Clinical Nutrition. 2000;72(2):607S-617S.
  • 11. Marshall RP, Droste JN, Giessing J, Kreider RB. Role of Creatine Supplementation in Conditions Involving Mitoc-hondrial Dysfunction: A Narrative Review. Nutrients. 2022;14(3):529.
  • 12. Boyadjiev N, Popov D, Delchev S. Exercise performance and muscle contractile properties after creatine monohyd-rate supplementation in aerobic-anaerobic training rats. J Sports Sci Med. 2007;6(4).
  • 13. Gu C, Yan J, Zhao L, Wu G, Wang YL. Regulation of Mitoc-hondrial Dynamics by Aerobic Exercise in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine. 2021; 13(8):788505.
  • 14. Benite-Ribeiro SA, Barbosa HC, Ramadan W, dos Santos JM. Exercise-mediated increase in PGC1α and MEF2 expression in type 2 diabetes mellitus. Gene Rep. 2023;31:101758.
  • 15. Bonen A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol. 2001;86(1):6-11.
  • 16. Kim Y, Phan D, Van Rooij E, Wang DZ, McAnally J, Qi X, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. Journal of Clinical Investigation. 2008;118(1):124-132.
  • 17. Seo DY, Kwak HB, Kim AH, Park SH, Heo JW, Kim HK, et al. Cardiac adaptation to exercise training in health and disease. Pflugers Archiv European Journal of Physiology. 2020;472(2):155-168.
  • 18. Leem YH, Kato M, Chang H. Regular exercise and creatine supplementation prevent chronic mild stress-induced dec-rease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. J Exerc Nutrition Biochem. 2018;22(2):1-6.
  • 19. Chen X, Li L, Guo J, Zhang L, Yuan Y, Chen B, et al. Tread-mill running exercise prevents senile osteoporosis and up-regulates the Wnt signaling pathway in SAMP6 mice. On-cotarget. 2016;7(44): 71072-71086.
  • 20. Kayacan Y, Çetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an au-tomated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2021;127(6):504-508.
  • 21. Piantadosi CA, Suliman HB. Redox regulation of mitoc-hondrial biogenesis. Free Radical Biology and Medicine. 2012;53(11):2043-2053.
  • 22. Carrillo ED, Hernández DI, Clara MV, Lezama I, García MC, Sánchez JA. Exercise increases MEF2A abundance in rat cardiac muscle by downregulating microRNA-223-5p. Sci Rep. 2023;13(1): 14481.
  • 23. Halestrap AP. The monocarboxylate transporter family-Structure and functional characterization. IUBMB Life. 2012;64(1):1-9.
  • 24. Sun W, Liu Q, Leng J, Zheng Y, Li J. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sciences. 2015;121:97-103.
  • 25. Park JM, Harrison CE, Ma J, Chen J, Ratnakar J, Zun Z, et al. Hyperpolarized 13c mr spectroscopy depicts in vivo ef-fect of exercise on pyruvate metabolism in human skele-tal muscle. Radiology. 2021;300(3):626-632.
  • 26. Jun L, Knight E, Broderick TL, Al-Nakkash L, Tobin B, Geet-ha T, et al. Moderate-Intensity Exercise Enhances Mitoc-hondrial Biogenesis Markers in the Skeletal Muscle of a Mouse Model Affected by Diet-Induced Obesity. Nutrients. 2024;16(12):1836.

Synergistic Effect of Aerobic Exercise Intensity and Creatine Monohydrate Supplementation on Energy Metabolism Biomarkers in Mice Cardiac Ventricular Muscle Tissue

Yıl 2024, Cilt: 21 Sayı: 3, 469 - 475, 27.12.2024
https://doi.org/10.35440/hutfd.1573754

Öz

Amaç: Kreatin monohidrat (CrM) takviyesinin ve farklı yoğunluktaki aerobik egzersizin farelerin kardiyak ventriküler kas dokusundaki enerji metabolizmasının temel biyobelirteçleri üzerindeki kombine etkile-rini araştırmaktır.
Materyal ve Metod: Kırk iki erkek BALB/c faresi rastgele altı gruba ayrıldı (grup başına n=7): kontrol (C), CrM takviyesi (C+CrM), düşük yoğunluklu egzersiz (LIE), CrM takviyesiyle LIE (LIE+CrM), yüksek yoğunluklu egzersiz (HIE) ve CrM takviyesiyle HIE (HIE+CrM). Sekiz hafta boyunca, egzersiz grupları haftada beş gün koşu bandında egzersiz uygulanırken, CrM grupları %4 CrM ile zenginleştirilmiş bir diyet aldı. Anahtar biyobelirteçler; miyosit güçlendirici faktör 2A (MEF2A), monokarboksilat taşıyıcı 1 (MCT1), pirüvat dehi-drogenaz (PDH), peroksisom proliferatör aktive reseptör gama koaktivatör 1-alfa (PGC-1α) ve mitokondri-yal transkripsiyon faktörü A (TFAM) ELISA testleri kullanılarak kardiyak ventriküler kas dokusunda kantifize edildi.
Bulgular: LIE+CrM grubu, C+CrM grubuna kıyasla MEF2A'da önemli bir artış gösterdi (p<0,05). PDH seviye-leri, hem LIE+CrM hem de HIE+CrM gruplarında, C ve C+CrM gruplarına kıyasla önemli ölçüde daha yüksekti (p<0,05). PGC-1α seviyeleri, LIE+CrM grubunda en yüksekti ve istatistiksel anlamlılığa yaklaşıyor-du (p=0,051). TFAM ekspresyonu, LIE+CrM grubunda, LIE, HIE ve C+CrM gruplarına kıyasla önemli ölçüde yüksekti (p<0,05). MCT1 seviyeleri, LIE+CrM grubunda anlamlı olmayan bir artış eğilimi gösterdi.
Sonuç: Düşük yoğunluklu aerobik egzersizle birleştirilen CrM takviyesi, kardiyak ventriküler kas dokusun-da mitokondriyal biyogenez ve enerji metabolizmasıyla ilişkili temel biyobelirteçleri önemli ölçüde artırır. Bu bulgular, kardiyak enerji metabolizmasını optimize edebilecek ve kardiyovasküler sağlığı iyileş-tirebilecek sinerjik bir etkiye işaret ediyor.

Etik Beyan

The experimental protocol was reviewed and approved by the Harran University Animal Experiments Local Ethics Committee (Approval No.: 2024/005, Decision No.: 01-11).

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Tuomainen T, Tavi P. The role of cardiac energy metabo-lism in cardiac hypertrophy and failure. Experimental Cell Research. 2017;360(1):12-18.
  • 2. Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, et al. Mitochondria and cardio-vascular diseases—from pathophysiology to treatment. Ann Transl Med. 2018;6(12):256.
  • 3. Kuznetsov A V., Javadov S, Margreiter R, Grimm M, Ha-genbuchner J, Ausserlechner MJ. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants. 2019;8(10):454.
  • 4. Kunkel GH, Chaturvedi P, Tyagi SC. Mitochondrial pathways to cardiac recovery: TFAM. Heart Fail Rev. 2016;21(5):499-517.
  • 5. Lim AY, Chen YC, Hsu CC, Fu TC, Wang JS. The Effects of Exercise Training on Mitochondrial Function in Cardiovas-cular Diseases: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2022;23:12559.
  • 6. Smiles WJ, Camera DM. More than mitochondrial bioge-nesis: Alternative roles of PGC-1α in exercise adaptation. Journal of Physiology. 2015;593(9):2115-2117.
  • 7. Li L, Mühlfeld C, Niemann B, Pan R, Li R, Hilfiker-Kleiner D, et al. Mitochondrial biogenesis and PGC-1α deacetyla-tion by chronic treadmill exercise: Differential response in cardiac and skeletal muscle. Basic Res Cardiol. 2011;106(6):1221-1234.
  • 8. Taskin S, Celik H, Demiryurek S, Turedi S, Taskin A. Effects of different-intensity exercise and creatine supplementa-tion on mitochondrial biogenesis and redox status in mice. Iran J Basic Med Sci. 2022;26(8):1009-1015.
  • 9. Gowayed M, Mahmoud S, El Sayed Y, Abu Samra N, Kamel M. Enhanced mitochondrial biogenesis is associa-ted with the ameliorative action of creatine supplementa-tion in rat soleus and cardiac muscles. Exp Ther Med. 2020;19(1):384-392.
  • 10. Casey A, Greenhaff PL. Does dietary creatine supplemen-tation play a role in skeletal muscle metabolism and per-formance? In: American Journal of Clinical Nutrition. 2000;72(2):607S-617S.
  • 11. Marshall RP, Droste JN, Giessing J, Kreider RB. Role of Creatine Supplementation in Conditions Involving Mitoc-hondrial Dysfunction: A Narrative Review. Nutrients. 2022;14(3):529.
  • 12. Boyadjiev N, Popov D, Delchev S. Exercise performance and muscle contractile properties after creatine monohyd-rate supplementation in aerobic-anaerobic training rats. J Sports Sci Med. 2007;6(4).
  • 13. Gu C, Yan J, Zhao L, Wu G, Wang YL. Regulation of Mitoc-hondrial Dynamics by Aerobic Exercise in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine. 2021; 13(8):788505.
  • 14. Benite-Ribeiro SA, Barbosa HC, Ramadan W, dos Santos JM. Exercise-mediated increase in PGC1α and MEF2 expression in type 2 diabetes mellitus. Gene Rep. 2023;31:101758.
  • 15. Bonen A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol. 2001;86(1):6-11.
  • 16. Kim Y, Phan D, Van Rooij E, Wang DZ, McAnally J, Qi X, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. Journal of Clinical Investigation. 2008;118(1):124-132.
  • 17. Seo DY, Kwak HB, Kim AH, Park SH, Heo JW, Kim HK, et al. Cardiac adaptation to exercise training in health and disease. Pflugers Archiv European Journal of Physiology. 2020;472(2):155-168.
  • 18. Leem YH, Kato M, Chang H. Regular exercise and creatine supplementation prevent chronic mild stress-induced dec-rease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. J Exerc Nutrition Biochem. 2018;22(2):1-6.
  • 19. Chen X, Li L, Guo J, Zhang L, Yuan Y, Chen B, et al. Tread-mill running exercise prevents senile osteoporosis and up-regulates the Wnt signaling pathway in SAMP6 mice. On-cotarget. 2016;7(44): 71072-71086.
  • 20. Kayacan Y, Çetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an au-tomated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2021;127(6):504-508.
  • 21. Piantadosi CA, Suliman HB. Redox regulation of mitoc-hondrial biogenesis. Free Radical Biology and Medicine. 2012;53(11):2043-2053.
  • 22. Carrillo ED, Hernández DI, Clara MV, Lezama I, García MC, Sánchez JA. Exercise increases MEF2A abundance in rat cardiac muscle by downregulating microRNA-223-5p. Sci Rep. 2023;13(1): 14481.
  • 23. Halestrap AP. The monocarboxylate transporter family-Structure and functional characterization. IUBMB Life. 2012;64(1):1-9.
  • 24. Sun W, Liu Q, Leng J, Zheng Y, Li J. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sciences. 2015;121:97-103.
  • 25. Park JM, Harrison CE, Ma J, Chen J, Ratnakar J, Zun Z, et al. Hyperpolarized 13c mr spectroscopy depicts in vivo ef-fect of exercise on pyruvate metabolism in human skele-tal muscle. Radiology. 2021;300(3):626-632.
  • 26. Jun L, Knight E, Broderick TL, Al-Nakkash L, Tobin B, Geet-ha T, et al. Moderate-Intensity Exercise Enhances Mitoc-hondrial Biogenesis Markers in the Skeletal Muscle of a Mouse Model Affected by Diet-Induced Obesity. Nutrients. 2024;16(12):1836.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Fizyoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hakim Çelik 0000-0002-7565-3394

Abdullah Taşkın 0000-0001-8642-1567

Proje Numarası -
Erken Görünüm Tarihi 19 Aralık 2024
Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 3 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 21 Sayı: 3

Kaynak Göster

Vancouver Çelik H, Taşkın A. Synergistic Effect of Aerobic Exercise Intensity and Creatine Monohydrate Supplementation on Energy Metabolism Biomarkers in Mice Cardiac Ventricular Muscle Tissue. Harran Üniversitesi Tıp Fakültesi Dergisi. 2024;21(3):469-75.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty