Araştırma Makalesi
BibTex RIS Kaynak Göster

Fourier Analysis of Inverse Coefficient Nonlinear Hyperbolic Equations under Periodic Boundary Conditions

Yıl 2024, , 1 - 7, 27.12.2024
https://doi.org/10.38061/idunas.1590039

Öz

Bu çalışma, periyodik sınır koşullarına sahip tek boyutlu ters katsayılı doğrusal olmayan hiperbolik denklemin analitik analizini sunar. Analitik çözüm, Fourier yöntemi uygulanarak türetilir. Yakınsamayı belirlemek ve doğrusal olmayan problemin çözümünün varlığını, benzersizliğini ve kararlılığını değerlendirmek için yinelemeli bir yaklaşım kullanılır.

Kaynakça

  • 1. Tekin, I. (2018). Existence and uniqueness of an inverse problem for a second order hyperbolic equation. Universal Journal of Mathematics and Applications, 1(3), 178-185. https://doi.org/10.32323/ujma.439662
  • 2. Hill, G.W. (1886). On The Part of the Motion of The Lunar Perigee Which is a Function of The Mean Motions of The Sun and Moon. Acta Mathematica, 8, 1–36.
  • 3. Asanova, A., Dzhumabaev, D. (2004). Periodic solutions of systems of hyperbolic equations bounded on a plane. Ukrainian Mathematical Journal, 56(4), 682-694. https://doi.org/10.1007/s11253-005-0103-0
  • 4. Huntul, M., Abbas, M., Băleanu, D. (2021). An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03608-1
  • 5. Denisov, A.M., Shirkova, E.Y. (2013). Inverse Problem for a Quasilinear Hyperbolic Equation with a Nonlocal Boundary Condition Containing a Delay Argument. Differ. Equations, 49, 1053–1061. doi: 10.1134/S0012266113090012
  • 6. Mehraliyev, Y., Huntul, M., Ramazanova, A., Tamsir, M., & Emadifar, H. (2022). An inverse boundary value problem for transverse vibrations of a bar. Boundary Value Problems, 2022(1). https://doi.org/10.1186/s13661-022-01679-x
  • 7. Kanca, F., Bağlan, İ. (2018). Inverse problem for Euler-Bernoulli equation with periodic boundary condition. Filomat, 32(16).
  • 8. Bağlan, İ. (2019). Analysis of Two-Dimensional Non-Linear Burgers'equations. TWMS Journal of Applied and Engineering Mathematics, 9(1), 38-48.
  • 9. Baglan, I. (2015). Determination of a Coefficient in a Quasilinear Parabolic Equation with Periodic Boundary Condition. Inverse Prob. Sci. Eng., 23, 884–900. doi: 10.1080/17415977.2014.947479

Fourier Analysis of Inverse Coefficient Nonlinear Hyperbolic Equations under Periodic Boundary Conditions

Yıl 2024, , 1 - 7, 27.12.2024
https://doi.org/10.38061/idunas.1590039

Öz

This study presents an analytical analysis of a one-dimensional inverse coefficient nonlinear hyperbolic equation with periodic boundary conditions. The analytical solution is derived by applying Fourier method. An iterative approach is used to establish convergence and to assess the existence, uniqueness and stability of the solution to the nonlinear problem.

Kaynakça

  • 1. Tekin, I. (2018). Existence and uniqueness of an inverse problem for a second order hyperbolic equation. Universal Journal of Mathematics and Applications, 1(3), 178-185. https://doi.org/10.32323/ujma.439662
  • 2. Hill, G.W. (1886). On The Part of the Motion of The Lunar Perigee Which is a Function of The Mean Motions of The Sun and Moon. Acta Mathematica, 8, 1–36.
  • 3. Asanova, A., Dzhumabaev, D. (2004). Periodic solutions of systems of hyperbolic equations bounded on a plane. Ukrainian Mathematical Journal, 56(4), 682-694. https://doi.org/10.1007/s11253-005-0103-0
  • 4. Huntul, M., Abbas, M., Băleanu, D. (2021). An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03608-1
  • 5. Denisov, A.M., Shirkova, E.Y. (2013). Inverse Problem for a Quasilinear Hyperbolic Equation with a Nonlocal Boundary Condition Containing a Delay Argument. Differ. Equations, 49, 1053–1061. doi: 10.1134/S0012266113090012
  • 6. Mehraliyev, Y., Huntul, M., Ramazanova, A., Tamsir, M., & Emadifar, H. (2022). An inverse boundary value problem for transverse vibrations of a bar. Boundary Value Problems, 2022(1). https://doi.org/10.1186/s13661-022-01679-x
  • 7. Kanca, F., Bağlan, İ. (2018). Inverse problem for Euler-Bernoulli equation with periodic boundary condition. Filomat, 32(16).
  • 8. Bağlan, İ. (2019). Analysis of Two-Dimensional Non-Linear Burgers'equations. TWMS Journal of Applied and Engineering Mathematics, 9(1), 38-48.
  • 9. Baglan, I. (2015). Determination of a Coefficient in a Quasilinear Parabolic Equation with Periodic Boundary Condition. Inverse Prob. Sci. Eng., 23, 884–900. doi: 10.1080/17415977.2014.947479
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Akbala Yernazar 0000-0003-4900-6027

İrem Bağlan 0000-0002-1877-9791

Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 22 Kasım 2024
Kabul Tarihi 9 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yernazar, A., & Bağlan, İ. (2024). Fourier Analysis of Inverse Coefficient Nonlinear Hyperbolic Equations under Periodic Boundary Conditions. Natural and Applied Sciences Journal, 7(2), 1-7. https://doi.org/10.38061/idunas.1590039