Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 3, 403 - 414, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1334068

Öz

Kaynakça

  • 1. Kafle, A., Luis, E., Silwal, R., Pan, H.M., Shrestha, P.L., Bastola, A.K., “3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA)”, Polymers, Vol. 13, Issue 18, Pages 1-37, 2021.
  • 2. Li, P., Fernandez, P.K., Spintzyk, S., Schmidt, F., Beuer, F., Unkovskiy, A., “Effect of additive manufacturing method and build angle on surface characteristics and Candida albicans adhesion to 3D printed denture base polymers”, Journal of Dentistry, Vol. 116, Pages 1-7, 2022.
  • 3. Cosmi, F., Maso, A.D., “A mechanical characterization of SLA 3D-printed specimens for low-budget applications”, Materials Today: Proceedings, Vol. 32, Issue 2, Pages 194-201, 2020.
  • 4. Shahrubudin, N., Lee, T.C., Ramlan, R., “An Overview on 3D Printing Technology: Technological, Materials, and Applications”, Procedia Manufacturing, Vol. 35, 1286–1296 Pages, 2019.
  • 5. Pagac, M., Hajnys, J., Ma, Q.-P., Jancar, L., Jansa, J., Stefek, P., Mesicek, J., “A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing”, Polymers, Vol. 13, 598, 2021.
  • 6. Mukhtarkhanov M., Perveen A., Talamona D., “Application of stereolithography based 3D printing technology in ınvestment casting”, Micromachines, Vol. 11, Issue 10, Pages 1-27, 2020.
  • 7. Piedra-Cascón, W., Krishnamurthy, V.R., Att, W., Revilla-León, M., “3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review”, Journal of Dentistry, Vol. 109, Pages 1-10, 2021.
  • 8. Al-Dulaijan, Y.A., Alsulaimi, L., Alotaibi, R., Alboainain, A., Alalawi, H., Alshehri, S., Khan, S.Q., Alsaloum, M., AlRumaih, H.S., Alhumaidan, A.A., “Comparative evaluation of surface roughness and hardness of 3D printed resins”, Materials, Vol. 15, Issue 19, 2022.
  • 9. Hata, K., Ikeda, H., Nagamatsu, Y., Masaki, C., Hosokawa, R., Shimizu, H., “Development of dental poly(methylmethacrylate)-based resin for stereolithography additive manufacturing”, Polymers, Vol. 13, Issue 24, 2021.
  • 10. Milanovic, A., Milosevic, M., Mladenovic, G., Likozar, B., Colic, K., Mitrovic, N., “Experimental dimensional accuracy analysis of reformer prototype model produced by FDM and SLA 3D printing technology”, Mitrovic, N., Milosevic, M., Mladenovic, G., Experimental and Numerical Investigations in Materials Science and Engineering, Pages 84–95, Springer, Warsaw, 2019.
  • 11. Turan S.R., Ulkir O., Kuncan M., Buldu A., “Stereolithografi eklemeli imalat yöntemiyle farklı doluluk oranlarında üretilen numunelerin mekanik özelliklerinin incelenmesi”, [Investigation of mechanical properties of samples produced at different filling ratios by stereolithography additive manufacturing method] [article in Turkish], International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 3, Pages 399-407, 2022.
  • 12. Güney, H., “Takı tasarımında üç boyutlu (3D) modelleme: Kurumsal okul mezuniyet yüzükleri”, [Three-dimensional (3D) modeling in jewelry design: Corporate school graduation rings] [article in Turkish], The Journal of Academic Social Science, Vol. 11, Issue 138, Pages 213-227, 2023.
  • 13. Revilla-León, M., Özcan, M., “Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry”, Journal of Prosthodontics, Vol. 28, Issue 2, Pages 146–158, 2018.
  • 14. Radwan, H., Elnaggar, G., Salah El Deen, I., “Surface roughness and color stability of 3D printed temporary crown material in different oral media (In vitro study)”, International Journal of Applied Dental Sciences, Vol. 7, Issue 1, Pages 327-334, 2021.
  • 15. Alfouzan, A, F., Alotiabi, H.M., Labban, N., Alotiabi, H.N., Al Taweel, S.M., Alshehri, H.A., “Effect of aging and mechanical brushing on surface roughness of 3d printed denture resins: a profilometer and scanning electron microscopy analysis”, Technology and Health Care, Vol. 30, Issue 1, Pages 161-173, 2022.
  • 16. Taki K., “A Simplified 2D numerical simulation of photopolymerization kinetics and oxygen diffusion–reaction for the continuous liquid ınterface production (CLIP) system”, Polymers, Vol. 12, Issue 4, Pages 1-11, 2020.
  • 17. Munprom, R., Limtasiri, S., “Optimization of stereolithographic 3D printing parameters using Taguchi method for improvement in mechanical properties”, Materials Today: Proceedings, Vol. 17, Issue 4, Pages 1768–1773, 2019.
  • 18. Borra, N.D., Neigapula, V.S.N., "Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method", Rapid Prototyping Journal, Vol. 29, Issue 1, Pages 166-184, 2023.
  • 19. Hada T, Kanazawa M, Iwaki M, Arakida T, Soeda Y, Katheng A, Otake R, Minakuchi S., “Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology”, Materials, Vol. 13, Issue 15, Pages 1-12, 2020.
  • 20. Arnold C., Monsees D., Hey J., Schweyen R., “Surface quality of 3D-printed models as a function of various printing parameters”, Materials, Vol. 12, Issue 12, Pages 1-15, 2019.
  • 21. Shanmugasundaram S.A., Razmi J., Mian M.J., Ladani L., “Mechanical anisotropy and surface roughness in additively manufactured parts fabricated by stereolithography (SLA) using statistical analysis”, Materials, Vol. 13, Issue 11, Pages 1-27, 2020.
  • 22. Espino, M.T., Tuazon, B.J., Robles, G.S., Dizon, J.R.C., “Application of Taguchi methodology in evaluating the Rockwell hardness of SLA 3D printed polymers”, Materials Science Forum, Vol. 1005, Pages 166–173, 2020.
  • 23. Zhou, J.G., Herscovici, D., Chen, C.C., “Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts”, International Journal of Machine Tools and Manufacture, Vol. 40, Issue 3, Pages 363-379, 2000.
  • 24. T.D. Dikova, D.A. Dzhendov, D. Ivanov, K. Bliznakova, “Dimensional accuracy and surface roughness of polymeric dental bridges produced by different 3D printing processes”, Archives of Materials Science and Engineering Vol. 94, Issue 2, 65-75 Pages, 2018.
  • 25. Mou, Y.A., Koc, M., “Dimensional capability of selected 3DP technologies”, Rapid Prototyping Journal, Vol. 25, Issue 5, 915–924 Pages, 2019.
  • 26. Özdilli, Ö., “Comparison of the Surface Quality of the Products Manufactured by the Plastic Injection Molding and SLA and FDM Method” International Journal of Engineering Research and Development, Vol. 13, Issue 2, 428-437 Pages, 2021.
  • 27. Ishida, Y., Miura, D., Miyasaka, T., Shinya, A., “Dimensional Accuracy of Dental Casting Patterns Fabricated Using Consumer 3D Printers”, Polymers, Vol. 12, Issue 10, 2244, 2020.
  • 28. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., “Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method”, Materials & Design, Vol. 30, Issue 10, Pages 4243-4252, 2009.
  • 29. Gerçekcioğlu, E., Albaşkara, M., “Multi-response optimization of electrical discharge machining of 17-4 ph ss using Taguchi-based grey relational analysis”, Archives of Metallurgy and Materials, Vol. 68, Issue 3, Pages 861-868, 2023.
  • 30. Dey, A., Hoffman, D., Yodo, N., “Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization”, International Journal on Interactive Design and Manufacturing, Vol. 14, Pages 393–405, 2020.
  • 31. Garg, N., Rastogi, V., Kumar, P., “Process parameter optimization on the dimensional accuracy of additive manufacture Thermoplastic Polyurethane (TPU) using RSM”, Materials Today: Proceedings, Vol. 62, Issue 1, Pages 94-99, 2022.
  • 32. Equbal, A., Sood, A.K., Ansari, A.R., Equbal, MD.A., “Optimization of process parameters of fdm part for minimiizing its dimensional inaccuracy”, International Journal of Mechanical and Production Engineering Research and Development, Vol. 7, Issue 2, Pages 57-66, 2017.
  • 33. Weheba, G., Sanchez-Marsa, A., “Using response surface methodology to optimize the stereolithography process”, Rapid Prototyping Journal, Vol. 12, Issue 2, Pages 72–77, 2006.
  • 34. El Magri, A., El Mabrouk, K., Vaudreuil, S., Ebn Touhami, M., “Experimental investigation and optimization of printing parameters of 3D printed polyphenylene sulfide through response surface methodology”, Journal of Applied Polymer, Vol. 138, Issue 1, Pages 1-13, 2020.
  • 35. Özbay, E., “Çinko oksit nanopartiküllerinin üretimi, karakterizasyonu ve fotokatalitik uygulamaları”, [Production, characterization and photocatalytic applications of zinc oxide nanoparticles] [in Turkish], Master Thesis, Selçuk University Graduate School of Natural and Applied Sciences, Ankara, 2014.
  • 36. Singh, S., Jain, A., Chaudhary, P., Gupta, R., Mali, H. S., “Optimization of dimensional accuracy and surface roughness in m-SLA using response surface methodology”, Rapid Prototyping Journal, Vol. 29, Issue 6, Pages 1324–1339, 2023. 37. Li, Y., Linke, B. S., Voet, H., Falk, B., Schmitt, R., Lam, M., “Cost, sustainability and surface roughness quality – A comprehensive analysis of products made with personal 3D printers”, CIRP Journal of Manufacturing Science and Technology, Vol 16, Pages 1-11, 2017.
  • 38. Zhang, Z., Li, P., Chu, F., Shen, G., “Influence of the three-dimensional printing technique and printing layer thickness on model accuracy”, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, Vol. 80, 194–204 Pages, 2019.

OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD

Yıl 2023, Cilt: 7 Sayı: 3, 403 - 414, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1334068

Öz

3D printers are used frequently for rapid prototyping and production. SLA (stereolithographic) printers, widely used in areas requiring precision production, form the final shape by solidifying the liquid resin with UV rays. In SLA printing, the final figure is created by changing many printing parameters. For this reason, surface integrity and precision of measurements vary. Dimensional accuracy (DA) and surface roughness (SR) outputs should be investigated for precise printing. Therefore, the effects on SR and DA output parameters were investigated by changing the layer height, exposure time, and lift input parameters with the Response Surface Method (RSM). The effective parameters for both outputs are layer height and lift. As the layer height and lift increased, the SR and DA values of the printed parts increased. The predicted results calculated with the regression equations and the experimental results were quite close. Optimum input parameters were found by multi-response optimization. Accordingly, the 8th experiment, 0.05mm-4s-1.5mm, was the best parameter. The difference between the predicted and experimental values for multi-response optimization was 4.28% for SR and 0.27% for DA. Thus, effective parameters for SR and DA have been determined for precision production in SLA printers.

Kaynakça

  • 1. Kafle, A., Luis, E., Silwal, R., Pan, H.M., Shrestha, P.L., Bastola, A.K., “3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA)”, Polymers, Vol. 13, Issue 18, Pages 1-37, 2021.
  • 2. Li, P., Fernandez, P.K., Spintzyk, S., Schmidt, F., Beuer, F., Unkovskiy, A., “Effect of additive manufacturing method and build angle on surface characteristics and Candida albicans adhesion to 3D printed denture base polymers”, Journal of Dentistry, Vol. 116, Pages 1-7, 2022.
  • 3. Cosmi, F., Maso, A.D., “A mechanical characterization of SLA 3D-printed specimens for low-budget applications”, Materials Today: Proceedings, Vol. 32, Issue 2, Pages 194-201, 2020.
  • 4. Shahrubudin, N., Lee, T.C., Ramlan, R., “An Overview on 3D Printing Technology: Technological, Materials, and Applications”, Procedia Manufacturing, Vol. 35, 1286–1296 Pages, 2019.
  • 5. Pagac, M., Hajnys, J., Ma, Q.-P., Jancar, L., Jansa, J., Stefek, P., Mesicek, J., “A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing”, Polymers, Vol. 13, 598, 2021.
  • 6. Mukhtarkhanov M., Perveen A., Talamona D., “Application of stereolithography based 3D printing technology in ınvestment casting”, Micromachines, Vol. 11, Issue 10, Pages 1-27, 2020.
  • 7. Piedra-Cascón, W., Krishnamurthy, V.R., Att, W., Revilla-León, M., “3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review”, Journal of Dentistry, Vol. 109, Pages 1-10, 2021.
  • 8. Al-Dulaijan, Y.A., Alsulaimi, L., Alotaibi, R., Alboainain, A., Alalawi, H., Alshehri, S., Khan, S.Q., Alsaloum, M., AlRumaih, H.S., Alhumaidan, A.A., “Comparative evaluation of surface roughness and hardness of 3D printed resins”, Materials, Vol. 15, Issue 19, 2022.
  • 9. Hata, K., Ikeda, H., Nagamatsu, Y., Masaki, C., Hosokawa, R., Shimizu, H., “Development of dental poly(methylmethacrylate)-based resin for stereolithography additive manufacturing”, Polymers, Vol. 13, Issue 24, 2021.
  • 10. Milanovic, A., Milosevic, M., Mladenovic, G., Likozar, B., Colic, K., Mitrovic, N., “Experimental dimensional accuracy analysis of reformer prototype model produced by FDM and SLA 3D printing technology”, Mitrovic, N., Milosevic, M., Mladenovic, G., Experimental and Numerical Investigations in Materials Science and Engineering, Pages 84–95, Springer, Warsaw, 2019.
  • 11. Turan S.R., Ulkir O., Kuncan M., Buldu A., “Stereolithografi eklemeli imalat yöntemiyle farklı doluluk oranlarında üretilen numunelerin mekanik özelliklerinin incelenmesi”, [Investigation of mechanical properties of samples produced at different filling ratios by stereolithography additive manufacturing method] [article in Turkish], International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 3, Pages 399-407, 2022.
  • 12. Güney, H., “Takı tasarımında üç boyutlu (3D) modelleme: Kurumsal okul mezuniyet yüzükleri”, [Three-dimensional (3D) modeling in jewelry design: Corporate school graduation rings] [article in Turkish], The Journal of Academic Social Science, Vol. 11, Issue 138, Pages 213-227, 2023.
  • 13. Revilla-León, M., Özcan, M., “Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry”, Journal of Prosthodontics, Vol. 28, Issue 2, Pages 146–158, 2018.
  • 14. Radwan, H., Elnaggar, G., Salah El Deen, I., “Surface roughness and color stability of 3D printed temporary crown material in different oral media (In vitro study)”, International Journal of Applied Dental Sciences, Vol. 7, Issue 1, Pages 327-334, 2021.
  • 15. Alfouzan, A, F., Alotiabi, H.M., Labban, N., Alotiabi, H.N., Al Taweel, S.M., Alshehri, H.A., “Effect of aging and mechanical brushing on surface roughness of 3d printed denture resins: a profilometer and scanning electron microscopy analysis”, Technology and Health Care, Vol. 30, Issue 1, Pages 161-173, 2022.
  • 16. Taki K., “A Simplified 2D numerical simulation of photopolymerization kinetics and oxygen diffusion–reaction for the continuous liquid ınterface production (CLIP) system”, Polymers, Vol. 12, Issue 4, Pages 1-11, 2020.
  • 17. Munprom, R., Limtasiri, S., “Optimization of stereolithographic 3D printing parameters using Taguchi method for improvement in mechanical properties”, Materials Today: Proceedings, Vol. 17, Issue 4, Pages 1768–1773, 2019.
  • 18. Borra, N.D., Neigapula, V.S.N., "Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method", Rapid Prototyping Journal, Vol. 29, Issue 1, Pages 166-184, 2023.
  • 19. Hada T, Kanazawa M, Iwaki M, Arakida T, Soeda Y, Katheng A, Otake R, Minakuchi S., “Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology”, Materials, Vol. 13, Issue 15, Pages 1-12, 2020.
  • 20. Arnold C., Monsees D., Hey J., Schweyen R., “Surface quality of 3D-printed models as a function of various printing parameters”, Materials, Vol. 12, Issue 12, Pages 1-15, 2019.
  • 21. Shanmugasundaram S.A., Razmi J., Mian M.J., Ladani L., “Mechanical anisotropy and surface roughness in additively manufactured parts fabricated by stereolithography (SLA) using statistical analysis”, Materials, Vol. 13, Issue 11, Pages 1-27, 2020.
  • 22. Espino, M.T., Tuazon, B.J., Robles, G.S., Dizon, J.R.C., “Application of Taguchi methodology in evaluating the Rockwell hardness of SLA 3D printed polymers”, Materials Science Forum, Vol. 1005, Pages 166–173, 2020.
  • 23. Zhou, J.G., Herscovici, D., Chen, C.C., “Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts”, International Journal of Machine Tools and Manufacture, Vol. 40, Issue 3, Pages 363-379, 2000.
  • 24. T.D. Dikova, D.A. Dzhendov, D. Ivanov, K. Bliznakova, “Dimensional accuracy and surface roughness of polymeric dental bridges produced by different 3D printing processes”, Archives of Materials Science and Engineering Vol. 94, Issue 2, 65-75 Pages, 2018.
  • 25. Mou, Y.A., Koc, M., “Dimensional capability of selected 3DP technologies”, Rapid Prototyping Journal, Vol. 25, Issue 5, 915–924 Pages, 2019.
  • 26. Özdilli, Ö., “Comparison of the Surface Quality of the Products Manufactured by the Plastic Injection Molding and SLA and FDM Method” International Journal of Engineering Research and Development, Vol. 13, Issue 2, 428-437 Pages, 2021.
  • 27. Ishida, Y., Miura, D., Miyasaka, T., Shinya, A., “Dimensional Accuracy of Dental Casting Patterns Fabricated Using Consumer 3D Printers”, Polymers, Vol. 12, Issue 10, 2244, 2020.
  • 28. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., “Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method”, Materials & Design, Vol. 30, Issue 10, Pages 4243-4252, 2009.
  • 29. Gerçekcioğlu, E., Albaşkara, M., “Multi-response optimization of electrical discharge machining of 17-4 ph ss using Taguchi-based grey relational analysis”, Archives of Metallurgy and Materials, Vol. 68, Issue 3, Pages 861-868, 2023.
  • 30. Dey, A., Hoffman, D., Yodo, N., “Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization”, International Journal on Interactive Design and Manufacturing, Vol. 14, Pages 393–405, 2020.
  • 31. Garg, N., Rastogi, V., Kumar, P., “Process parameter optimization on the dimensional accuracy of additive manufacture Thermoplastic Polyurethane (TPU) using RSM”, Materials Today: Proceedings, Vol. 62, Issue 1, Pages 94-99, 2022.
  • 32. Equbal, A., Sood, A.K., Ansari, A.R., Equbal, MD.A., “Optimization of process parameters of fdm part for minimiizing its dimensional inaccuracy”, International Journal of Mechanical and Production Engineering Research and Development, Vol. 7, Issue 2, Pages 57-66, 2017.
  • 33. Weheba, G., Sanchez-Marsa, A., “Using response surface methodology to optimize the stereolithography process”, Rapid Prototyping Journal, Vol. 12, Issue 2, Pages 72–77, 2006.
  • 34. El Magri, A., El Mabrouk, K., Vaudreuil, S., Ebn Touhami, M., “Experimental investigation and optimization of printing parameters of 3D printed polyphenylene sulfide through response surface methodology”, Journal of Applied Polymer, Vol. 138, Issue 1, Pages 1-13, 2020.
  • 35. Özbay, E., “Çinko oksit nanopartiküllerinin üretimi, karakterizasyonu ve fotokatalitik uygulamaları”, [Production, characterization and photocatalytic applications of zinc oxide nanoparticles] [in Turkish], Master Thesis, Selçuk University Graduate School of Natural and Applied Sciences, Ankara, 2014.
  • 36. Singh, S., Jain, A., Chaudhary, P., Gupta, R., Mali, H. S., “Optimization of dimensional accuracy and surface roughness in m-SLA using response surface methodology”, Rapid Prototyping Journal, Vol. 29, Issue 6, Pages 1324–1339, 2023. 37. Li, Y., Linke, B. S., Voet, H., Falk, B., Schmitt, R., Lam, M., “Cost, sustainability and surface roughness quality – A comprehensive analysis of products made with personal 3D printers”, CIRP Journal of Manufacturing Science and Technology, Vol 16, Pages 1-11, 2017.
  • 38. Zhang, Z., Li, P., Chu, F., Shen, G., “Influence of the three-dimensional printing technique and printing layer thickness on model accuracy”, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, Vol. 80, 194–204 Pages, 2019.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Makine Mühendisliği (Diğer), Üretim ve Endüstri Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Albaşkara 0000-0001-9484-8368

Serkan Türkyılmaz 0000-0002-5082-5057

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 28 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 3

Kaynak Göster

APA Albaşkara, M., & Türkyılmaz, S. (2023). OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD. International Journal of 3D Printing Technologies and Digital Industry, 7(3), 403-414. https://doi.org/10.46519/ij3dptdi.1334068
AMA Albaşkara M, Türkyılmaz S. OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD. IJ3DPTDI. Aralık 2023;7(3):403-414. doi:10.46519/ij3dptdi.1334068
Chicago Albaşkara, Mehmet, ve Serkan Türkyılmaz. “OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD”. International Journal of 3D Printing Technologies and Digital Industry 7, sy. 3 (Aralık 2023): 403-14. https://doi.org/10.46519/ij3dptdi.1334068.
EndNote Albaşkara M, Türkyılmaz S (01 Aralık 2023) OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD. International Journal of 3D Printing Technologies and Digital Industry 7 3 403–414.
IEEE M. Albaşkara ve S. Türkyılmaz, “OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD”, IJ3DPTDI, c. 7, sy. 3, ss. 403–414, 2023, doi: 10.46519/ij3dptdi.1334068.
ISNAD Albaşkara, Mehmet - Türkyılmaz, Serkan. “OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD”. International Journal of 3D Printing Technologies and Digital Industry 7/3 (Aralık 2023), 403-414. https://doi.org/10.46519/ij3dptdi.1334068.
JAMA Albaşkara M, Türkyılmaz S. OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD. IJ3DPTDI. 2023;7:403–414.
MLA Albaşkara, Mehmet ve Serkan Türkyılmaz. “OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD”. International Journal of 3D Printing Technologies and Digital Industry, c. 7, sy. 3, 2023, ss. 403-14, doi:10.46519/ij3dptdi.1334068.
Vancouver Albaşkara M, Türkyılmaz S. OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD. IJ3DPTDI. 2023;7(3):403-14.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.