Araştırma Makalesi
BibTex RIS Kaynak Göster

316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI

Yıl 2025, Cilt: 9 Sayı: 2, 183 - 193, 30.08.2025
https://doi.org/10.46519/ij3dptdi.1637693

Öz

Eklemeli imalat yöntemleri, karmaşık geometrilerin ve prototip numunelerin üretimindeki avantajları nedeniyle yaygın olarak araştırılmaktadır. Toz yatakta birleştirmede, uygun ısı kaynağı ve işlem parametrelerinin belirlenmesi tek çizgi katılaşma ile başlamaktadır. Bu çalışmada, lazer ve elektron ışınına alternatif olarak ark kullanılarak, 316L paslanmaz çelik tozunun tek çizgi ergitilebilirliği incelenmiştir. Ergitmeler 0,4 mm kalınlığındaki toz yatakta, 17, 22 ve 27 amper akım değerleri ile gerçekleştirilmiş; ilerleme hızları 1 ve 2 mm/s, elektrot mesafeleri ise 0,7 ve 1 mm olarak belirlenmiştir. Farklı parametre kombinasyonları ile yapılan deneylerde katılaşma geometrisi, ısıl etkilenmiş bölge ve mikroyapı detaylı olarak değerlendirilmiştir. Elde edilen sonuçlar, düşük akım ve yüksek ilerleme hızlarında çizgisel katılaşma kabiliyetinin azaldığını; yüksek akım ve düşük ilerleme hızlarında ise daha geniş ve homojen katılaşma bölgelerinin oluştuğunu göstermektedir. Elektrot mesafesindeki artışın enerji yoğunluğunu azaltarak katılaşma genişliği ve tabla nüfuziyetini düşürdüğü belirlenmiştir. Çalışma, ark kullanımının lazer ve elektron ışınına alternatif olarak uygulanabilirliğini ortaya koymakta ve işlem parametrelerinin optimizasyonu için önemli bulgular sunmaktadır.

Etik Beyan

Bu çalışma Kafkas Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2023-FM-40 nolu projesi ile desteklenmiştir.

Destekleyen Kurum

Kafkas Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2023-FM-40

Teşekkür

Bu çalışma Kafkas Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2023-FM-40 nolu projesi ile desteklenmiştir.

Kaynakça

  • 1. Babaev A., Promakhov V., Schulz N., Semenov A., Bakhmat V., Vorozhtsov A., "Processes of Physical Treatment of Stainless Steels Obtained by Additive Manufacturing", Metals, Vol. 12, Issue 9, Pages 1-18, 2022.
  • 2. Liu, B., Fang, G., Lei, L., Yan, X. "Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry", International Journal of Mechanical Sciences, Vol. 228, Issue 1, Pages 1-14, 2022.
  • 3. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W., "Additive manufacturing of metallic components – Process, structure and properties", Progress in Materials Science, Vol. 92, Issue 1, Pages 112-224, 2018.
  • 4. Nayak, S. K., Mishra, S. K., Paul, C. P., Jinoop, A. N., Bindra, K. S., "Effect of energy density on laser powder bed fusion built single tracks and thin wall structures with 100 µm preplaced powder layer thickness", Optics & Laser Technology, Vol. 125, Issue 1, Pages 112-224, 2018.
  • 5. Yadroitsev, I., Smurov, I., "Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape", Physics Procedia, Vol. 5, Issue 1, Pages 551–560, 2010.
  • 6. Di, W., Yongqiang, Y., Xubin, S., Yonghua, C., "Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM", The International Journal of Advanced Manufacturing Technology, Vol. 58, Issue 1, Pages 1189–1199, 2012.
  • 7. Cary, H. B., and Helzer, S. C., "Modern Welding Technology", Pages 271-292, Pearson/Prentice Hall, New Jersey, 2005.
  • 8. Kutelu, B. J., Seidu, S. O., Eghabor, G. I., Ibitoye, A. I., "Review of GTAW welding parameters", Journal of Minerals and Materials Characterization and Engineering, Vol. 6, Issue 1, Pages 541-554, 2018.
  • 9. Singh, R. P., Agrawal, M. K., "Effect of welding current on the dimensions of bead in tungsten inert gas welding process", Materials Today: Proceedings, Vol. 45, Issue 2, Pages 3235-3239, 2021.
  • 10. Singh, L., Singh, D., Singh, P. "A Review: Parametric effect on mechanical properties and weld bead geometry of Aluminium alloy in GTAW", IOSR-JMCE, Vol 6, Issue 1, Pages 24-30, 2013.
  • 11. Stenbacka, N., Choquet, I., Hurtig, K., "Review of arc efficiency values for gas tungsten arc welding", IIW Commission IV-XII-SG212 Intermediate Meeting, Pages 18-20, Berlin, 2012.
  • 12. Mills, K.C., Keene, B.J., "Factors affecting variable weld penetration", International Materials Reviews, Vol. 35, Issue 1, Pages 185–216, 1990.
  • 13. Shaoyong, C., Shixin, X., Jimei, W., & Xing, L., "Influence of gap distance on the arc modes transition of cup type AMF electrode", International Symposium on Discharges and Electrical Insulation in Vacuum, Pages 384-387, Matsue, 2016.
  • 14. Schleifenbaum, H., Diatlov, A., Hinke, C., Bültmann, J., Voswinckel, H., "Direct photonic production: Towards high speed additive manufacturing of individualized goods", Production Engineering, Vol. 5, Issue 1, Pages 359-371, 2011.
  • 15. Ma, M., Wang, Z., Gao, M., Zeng, X., "Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel", Journal of Materials Processing Technology, Vol. 215, Issue 1, Pages 142-150, 2015.
  • 16. Shi, X., Ma, S., Liu, C., Chen, C., Wu, Q., Chen, X., Lu, J., "Performance of high layer thickness in selective laser melting of Ti6Al4V", Materials, Vol. 9, Issue 12, Pages 1-15, 2016.
  • 17. Wang, S., Liu, Y., Shi, W., Qi, B., Yang, J., Zhang, F., Han, D., Ma, Y., "Research on high layer thickness fabricated of 316L by selective laser melting", Materials, Vol. 10, Issue 9, Pages 1-15, 2017.
  • 18. Shi, W., Liu, Y., Shi, X., Hou, Y., Wang, P., Song, G., "Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V", Materials, Vol. 11, Issue 7, Pages 1-17, 2018.
  • 19. Shi, W., Wang, P., Liu, Y., Hou, Y., Han, G., "Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness", Powder Technology, Vol. 360, Issue 1, Pages 151-164, 2020.
  • 20. Shi, X., Yan, C., Feng, W., Zhang, Y., Leng, Z., "Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting", Optics & Laser Technology, Vol. 132, Issue 1, Pages 1-11, 2020.
  • 21. Brudler, S., Medvedev, A. E., Pandelidi, C., Piegert, S., Illston, T., Qian, M., Brandt, M., "Systematic investigation of performance and productivity in laser powder bed fusion of Ti6Al4V up to 300 µm layer thickness", Journal of Materials Processing Technology, Vol. 330, Issue 1, Pages 1-18, 2024.
  • 22. Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I., & Everitt, N. M., "On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties", Journal of Materials Processing Technology, Vol. 230, Issue 1, Pages 88-98, 2016.
  • 23. Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., Johansson, S., Smurov, I., "Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder", Journal of Materials Processing Technology, Vol. 213, Issue 4, Pages 606-613, 2013.
  • 24. Singh, A. K., Dey, V., Rai, R. N., "Techniques to improveweld penetration in TIG welding (A review)", Materials Today: Proceedings, Vol. 4, Issue 2, Pages 1252-1259, 2017.
  • 25. Anık S., Tülbentçi, K., Kaluç, E., "Örtülü Elektrot İle Elektrik Ark Kaynağı", Sayfa 16-83, Gedik Holding A.Ş., İstanbul, , 1991.
  • 26. Abubakar, M.L., Ahmed, M.S., Abdussalam, A.F., Mohammed, S. "Meteorological drought and long-term trends and spatial variability of rainfall in the Niger River Basin", Nigeria. Environmental Science and Pollution Research, Vol. 32, Pages 5302–5319, 2025.
  • 27. Samiuddin, M., Li, J. L., Taimoor, M., Siddiqui, M. N., Siddiqui, S. U., Xiong, J. T., "Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization", Defence Technology, Vol. 17, Issue 4, Pages 1234-1248, 2021.
  • 28. Tseng, K. H., Chuang, K. J., "Application of iron-based powders in tungsten inert gas welding for 17Cr–10Ni–2Mo alloys", Powder technology, Vol. 228, Issue 1, Pages 36-46, 2012.
  • 29. Singh, S.R., Khanna, P., "A-TIG (activated flux tungsten inert gas) welding: – A review", Materials Today: Proceedings, Vol. 44, Issue 1, Pages 808–820, 2021.
  • 30. Tang, C., Tan, J. L., Wong, C. H., "A numerical investigation on the physical mechanisms of single track defects in selective laser melting", International Journal of Heat and Mass Transfer, Vol. 126, Issue 1, Pages 957-968, 2018.
  • 31. Gu, H., Wei, C., Li, L., Han, Q., Setchi, R., Ryan, M., & Li, Q., "Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting", International Journal of Heat and Mass Transfer, Vol. 151, Issue 1, Pages 1-16, 2020.
  • 32. İpek, İ., "Nikel ve monel malzemelerin kaynağı", Yüksek Lisans Tezi, [Weldıng of nickel and monel materials], [Thesis in Turkish], Sakarya Üniversitesi, Sakarya, 2007.
  • 33. Kou, S., "Welding metallurgy", John Wiley and Sons Inc., Hoboken N.J., 2003.
  • 34. Coniglio, N., Cross, C. E., "Effect of weld travel speed on solidification cracking behavior. Part 2: testing conditions and metrics", The International Journal of Advanced Manufacturing Technology, Vol. 107, Issue 1, Pages 5025-5038, 2020.

INVESTIGATION OF THE EFFECTS OF ELECTRODE DISTANCE ON SINGLE-TRACK MELTING OF 316L STAINLESS STEEL POWDER BY ARC

Yıl 2025, Cilt: 9 Sayı: 2, 183 - 193, 30.08.2025
https://doi.org/10.46519/ij3dptdi.1637693

Öz

Additive manufacturing techniques are extensively studied nowadays because of their benefits in fabricating intricate geometries and prototype specimens. In powder bed fusion, the selection of the suitable heat source and process parameters initiates with single-line solidification. This study examined the single-line meltability of 316L stainless steel powder utilizing an arc as an alternative heat source to laser and electron beam methods. Melting was conducted on a 0,4 mm thick powder bed utilizing current values of 17, 22, and 27 amperes; travel speeds of 1 and 2 mm/s; and electrode distances of 0,7 and 1 mm. The experiments, performed with various parameter combinations, were assessed regarding solidification geometry, heat-affected zone, and microstructure. The findings indicated that linear solidification efficiency diminished at low current and elevated travel speeds, whereas broader and more uniform solidification areas were achieved at high current and reduced travel speeds. An increase in electrode distance was found to diminish energy density, resulting in a reduction of solidification width and substrate penetration. This study illustrates the viability of employing arc technology as a substitute for laser and electron beam methods in powder bed single-track melting, yielding significant insights for the optimization of process parameters.

Proje Numarası

2023-FM-40

Kaynakça

  • 1. Babaev A., Promakhov V., Schulz N., Semenov A., Bakhmat V., Vorozhtsov A., "Processes of Physical Treatment of Stainless Steels Obtained by Additive Manufacturing", Metals, Vol. 12, Issue 9, Pages 1-18, 2022.
  • 2. Liu, B., Fang, G., Lei, L., Yan, X. "Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry", International Journal of Mechanical Sciences, Vol. 228, Issue 1, Pages 1-14, 2022.
  • 3. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W., "Additive manufacturing of metallic components – Process, structure and properties", Progress in Materials Science, Vol. 92, Issue 1, Pages 112-224, 2018.
  • 4. Nayak, S. K., Mishra, S. K., Paul, C. P., Jinoop, A. N., Bindra, K. S., "Effect of energy density on laser powder bed fusion built single tracks and thin wall structures with 100 µm preplaced powder layer thickness", Optics & Laser Technology, Vol. 125, Issue 1, Pages 112-224, 2018.
  • 5. Yadroitsev, I., Smurov, I., "Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape", Physics Procedia, Vol. 5, Issue 1, Pages 551–560, 2010.
  • 6. Di, W., Yongqiang, Y., Xubin, S., Yonghua, C., "Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM", The International Journal of Advanced Manufacturing Technology, Vol. 58, Issue 1, Pages 1189–1199, 2012.
  • 7. Cary, H. B., and Helzer, S. C., "Modern Welding Technology", Pages 271-292, Pearson/Prentice Hall, New Jersey, 2005.
  • 8. Kutelu, B. J., Seidu, S. O., Eghabor, G. I., Ibitoye, A. I., "Review of GTAW welding parameters", Journal of Minerals and Materials Characterization and Engineering, Vol. 6, Issue 1, Pages 541-554, 2018.
  • 9. Singh, R. P., Agrawal, M. K., "Effect of welding current on the dimensions of bead in tungsten inert gas welding process", Materials Today: Proceedings, Vol. 45, Issue 2, Pages 3235-3239, 2021.
  • 10. Singh, L., Singh, D., Singh, P. "A Review: Parametric effect on mechanical properties and weld bead geometry of Aluminium alloy in GTAW", IOSR-JMCE, Vol 6, Issue 1, Pages 24-30, 2013.
  • 11. Stenbacka, N., Choquet, I., Hurtig, K., "Review of arc efficiency values for gas tungsten arc welding", IIW Commission IV-XII-SG212 Intermediate Meeting, Pages 18-20, Berlin, 2012.
  • 12. Mills, K.C., Keene, B.J., "Factors affecting variable weld penetration", International Materials Reviews, Vol. 35, Issue 1, Pages 185–216, 1990.
  • 13. Shaoyong, C., Shixin, X., Jimei, W., & Xing, L., "Influence of gap distance on the arc modes transition of cup type AMF electrode", International Symposium on Discharges and Electrical Insulation in Vacuum, Pages 384-387, Matsue, 2016.
  • 14. Schleifenbaum, H., Diatlov, A., Hinke, C., Bültmann, J., Voswinckel, H., "Direct photonic production: Towards high speed additive manufacturing of individualized goods", Production Engineering, Vol. 5, Issue 1, Pages 359-371, 2011.
  • 15. Ma, M., Wang, Z., Gao, M., Zeng, X., "Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel", Journal of Materials Processing Technology, Vol. 215, Issue 1, Pages 142-150, 2015.
  • 16. Shi, X., Ma, S., Liu, C., Chen, C., Wu, Q., Chen, X., Lu, J., "Performance of high layer thickness in selective laser melting of Ti6Al4V", Materials, Vol. 9, Issue 12, Pages 1-15, 2016.
  • 17. Wang, S., Liu, Y., Shi, W., Qi, B., Yang, J., Zhang, F., Han, D., Ma, Y., "Research on high layer thickness fabricated of 316L by selective laser melting", Materials, Vol. 10, Issue 9, Pages 1-15, 2017.
  • 18. Shi, W., Liu, Y., Shi, X., Hou, Y., Wang, P., Song, G., "Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V", Materials, Vol. 11, Issue 7, Pages 1-17, 2018.
  • 19. Shi, W., Wang, P., Liu, Y., Hou, Y., Han, G., "Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness", Powder Technology, Vol. 360, Issue 1, Pages 151-164, 2020.
  • 20. Shi, X., Yan, C., Feng, W., Zhang, Y., Leng, Z., "Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting", Optics & Laser Technology, Vol. 132, Issue 1, Pages 1-11, 2020.
  • 21. Brudler, S., Medvedev, A. E., Pandelidi, C., Piegert, S., Illston, T., Qian, M., Brandt, M., "Systematic investigation of performance and productivity in laser powder bed fusion of Ti6Al4V up to 300 µm layer thickness", Journal of Materials Processing Technology, Vol. 330, Issue 1, Pages 1-18, 2024.
  • 22. Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I., & Everitt, N. M., "On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties", Journal of Materials Processing Technology, Vol. 230, Issue 1, Pages 88-98, 2016.
  • 23. Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., Johansson, S., Smurov, I., "Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder", Journal of Materials Processing Technology, Vol. 213, Issue 4, Pages 606-613, 2013.
  • 24. Singh, A. K., Dey, V., Rai, R. N., "Techniques to improveweld penetration in TIG welding (A review)", Materials Today: Proceedings, Vol. 4, Issue 2, Pages 1252-1259, 2017.
  • 25. Anık S., Tülbentçi, K., Kaluç, E., "Örtülü Elektrot İle Elektrik Ark Kaynağı", Sayfa 16-83, Gedik Holding A.Ş., İstanbul, , 1991.
  • 26. Abubakar, M.L., Ahmed, M.S., Abdussalam, A.F., Mohammed, S. "Meteorological drought and long-term trends and spatial variability of rainfall in the Niger River Basin", Nigeria. Environmental Science and Pollution Research, Vol. 32, Pages 5302–5319, 2025.
  • 27. Samiuddin, M., Li, J. L., Taimoor, M., Siddiqui, M. N., Siddiqui, S. U., Xiong, J. T., "Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization", Defence Technology, Vol. 17, Issue 4, Pages 1234-1248, 2021.
  • 28. Tseng, K. H., Chuang, K. J., "Application of iron-based powders in tungsten inert gas welding for 17Cr–10Ni–2Mo alloys", Powder technology, Vol. 228, Issue 1, Pages 36-46, 2012.
  • 29. Singh, S.R., Khanna, P., "A-TIG (activated flux tungsten inert gas) welding: – A review", Materials Today: Proceedings, Vol. 44, Issue 1, Pages 808–820, 2021.
  • 30. Tang, C., Tan, J. L., Wong, C. H., "A numerical investigation on the physical mechanisms of single track defects in selective laser melting", International Journal of Heat and Mass Transfer, Vol. 126, Issue 1, Pages 957-968, 2018.
  • 31. Gu, H., Wei, C., Li, L., Han, Q., Setchi, R., Ryan, M., & Li, Q., "Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting", International Journal of Heat and Mass Transfer, Vol. 151, Issue 1, Pages 1-16, 2020.
  • 32. İpek, İ., "Nikel ve monel malzemelerin kaynağı", Yüksek Lisans Tezi, [Weldıng of nickel and monel materials], [Thesis in Turkish], Sakarya Üniversitesi, Sakarya, 2007.
  • 33. Kou, S., "Welding metallurgy", John Wiley and Sons Inc., Hoboken N.J., 2003.
  • 34. Coniglio, N., Cross, C. E., "Effect of weld travel speed on solidification cracking behavior. Part 2: testing conditions and metrics", The International Journal of Advanced Manufacturing Technology, Vol. 107, Issue 1, Pages 5025-5038, 2020.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Arif Balcı 0000-0002-4932-9654

Proje Numarası 2023-FM-40
Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 11 Şubat 2025
Kabul Tarihi 1 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Balcı, A. (2025). 316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI. International Journal of 3D Printing Technologies and Digital Industry, 9(2), 183-193. https://doi.org/10.46519/ij3dptdi.1637693
AMA Balcı A. 316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI. IJ3DPTDI. Ağustos 2025;9(2):183-193. doi:10.46519/ij3dptdi.1637693
Chicago Balcı, Arif. “316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI”. International Journal of 3D Printing Technologies and Digital Industry 9, sy. 2 (Ağustos 2025): 183-93. https://doi.org/10.46519/ij3dptdi.1637693.
EndNote Balcı A (01 Ağustos 2025) 316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI. International Journal of 3D Printing Technologies and Digital Industry 9 2 183–193.
IEEE A. Balcı, “316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI”, IJ3DPTDI, c. 9, sy. 2, ss. 183–193, 2025, doi: 10.46519/ij3dptdi.1637693.
ISNAD Balcı, Arif. “316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI”. International Journal of 3D Printing Technologies and Digital Industry 9/2 (Ağustos2025), 183-193. https://doi.org/10.46519/ij3dptdi.1637693.
JAMA Balcı A. 316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI. IJ3DPTDI. 2025;9:183–193.
MLA Balcı, Arif. “316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI”. International Journal of 3D Printing Technologies and Digital Industry, c. 9, sy. 2, 2025, ss. 183-9, doi:10.46519/ij3dptdi.1637693.
Vancouver Balcı A. 316L PASLANMAZ ÇELİK TOZUNUN ARK İLE TEK ÇİZGİ ERGİTİLMESİNDE ELEKTROT MESAFESİNİN ETKİLERİNİN ARAŞTIRILMASI. IJ3DPTDI. 2025;9(2):183-9.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.