Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparison of Latent Class Analysis and the Mixture Rasch Model Using 8th Grade Mathematics Data in the Fourth International Mathematics and Science Study (TIMSS-2011)

Yıl 2021, Cilt: 8 Sayı: 4, 959 - 974, 04.12.2021
https://doi.org/10.21449/ijate.1024251

Öz

This study provides a comparison of the results of latent class analysis (LCA) and mixture Rasch model (MRM) analysis using data from the Trends in International Mathematics and Science Study – 2011 (TIMSS-2011) with a focus on the 8th-grade mathematics section. The research study focuses on the comparison of LCA and MRM to determine if results obtained differ when the assumed psychometric model differs. Also, a log-linear analysis was conducted to understand the interactions between latent classes identified by LCA and MRM. Response data to the three booklets were used to run latent class analysis using Mplus 7.31 (Muthén & Muthén, 2012a) for LCA and WINMIRA (von Davier, 2001a). The findings of this paper do not reveal unequivocally whether a model based on primarily qualitative differences (LCA), that is, different strategies, instructional differences, curriculum etc. or a model including additional factors of quantitative differences within strategies (MRM) should be used with this particular dataset. Both of the tests provided similar results with more or less similar interpretations. Both techniques fit the data similarly, a result found in prior research. Nonetheless, for tests similar to TIMSS exams, item difficulty parameters can be useful for educational researchers giving potential priority to use of MRM.

Kaynakça

  • Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. Springer Series in Statistics, 199-213. https://doi.org/10.1007/978-1-4612-1694-0_15
  • Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345 370. https://doi.org/10.1007/bf02294361
  • Büsch, D., Hagemann, N., & Bender, N. (2010). The dimensionality of the Edinburgh handedness inventory: An analysis with models of the item response theory. Laterality: Asymmetries of Body, Brain and Cognition, 15(6), 610 628. https://doi.org/10.1080/13576500903081806
  • Clark, S. L. (2010). Mixture modeling with behavioral data (3405665) [Doctoral dissertation]. ProQuest Dissertations and Theses Global.
  • Cressie, N., & Read, T. R. C. (1984a). Multinomial Goodness-Of-Fit Tests. Journal of the Royal Statistical Society: Series B (Methodological), 46(3), 440 464. https://doi.org/10.1111/j.2517-6161.1984.tb01318.x
  • Dallas, A. D., & Willse, J. T. (2013). Survey analysis with mixture Rasch models. Journal of Applied Measurement,15(4), 394 404. https://europepmc.org/article/med/25232672
  • Fischer, G. H., & Molenaar, I. W. (Eds.). (2012). Rasch models: Foundations, recent developments, and applications. Springer Science & Business Media.
  • Frick, H., Strobl, C., & Zeileis, A. (2015). Rasch mixture models for DIF detection: A comparison of old and new score specifications. Educational and Psychological Measurement, 75(2), 208-234. https://doi.org/10.1177/0013164414536183
  • McCutcheon, A. L. (1987). Latent class analysis. SAGE.
  • Muthén, L. K., & Muthén, B. O. (2012a). Mplus (Version 7.31) [Computer Software]. Los Angeles, Muthén&Muthén.
  • Muthén, L. K., & Muthén, B. O. (1998). 2014. Mplus User’s Guide, 7th edition. Muthén & Muthén.
  • Nagin, D. (2005). Group-based modeling of development. Harvard University Press.
  • Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Danish Institute for Educational Research. https://doi.org/10.4135/9781412961288.n335
  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271 282. https://doi.org/10.1177/014662169001400305
  • Rutkowski, L., & Rutkowski, D. (2016). A call for a more measured approach to reporting and interpreting PISA results. Educational Researcher, 45(4), 252 257. https://doi.org/10.3102/0013189X16649961
  • Sigott, G. (2004). Towards identifying the C-Test construct. Peter Lang.
  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. CUP Archive.
  • Vermunt, J. K., & Magidson, J. (2004). Latent class analysis. The Sage Encyclopedia of Social Sciences Research Methods, 2, 549 553. Methods. https://doi.org/10.4135/9781412950589.n472
  • von Davier, M. (2001). WINMIRA [Computer software]. Institut für die Pädagogik der Naturwissenschaften
  • von Davier, M. (2001b). WINMIRA user manual [Computer software manual]. Institut für die Pädagogik der Naturwissenschaften
  • Wang, J., & Wang, X. (2019). Structural equation modeling: Applications using Mplus. John Wiley & Sons.

A Comparison of Latent Class Analysis and the Mixture Rasch Model Using 8th Grade Mathematics Data in the Fourth International Mathematics and Science Study (TIMSS-2011)

Yıl 2021, Cilt: 8 Sayı: 4, 959 - 974, 04.12.2021
https://doi.org/10.21449/ijate.1024251

Öz

This study provides a comparison of the results of latent class analysis (LCA) and mixture Rasch model (MRM) analysis using data from the Trends in International Mathematics and Science Study – 2011 (TIMSS-2011) with a focus on the 8th-grade mathematics section. The research study focuses on the comparison of LCA and MRM to determine if results obtained differ when the assumed psychometric model differs. Also, a log-linear analysis was conducted to understand the interactions between latent classes identified by LCA and MRM. Response data to the three booklets were used to run latent class analysis using Mplus 7.31 (Muthén & Muthén, 2012a) for LCA and WINMIRA (von Davier, 2001a). The findings of this paper do not reveal unequivocally whether a model based on primarily qualitative differences (LCA), that is, different strategies, instructional differences, curriculum etc. or a model including additional factors of quantitative differences within strategies (MRM) should be used with this particular dataset. Both of the tests provided similar results with more or less similar interpretations. Both techniques fit the data similarly, a result found in prior research. Nonetheless, for tests similar to TIMSS exams, item difficulty parameters can be useful for educational researchers giving potential priority to use of MRM.

Kaynakça

  • Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. Springer Series in Statistics, 199-213. https://doi.org/10.1007/978-1-4612-1694-0_15
  • Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345 370. https://doi.org/10.1007/bf02294361
  • Büsch, D., Hagemann, N., & Bender, N. (2010). The dimensionality of the Edinburgh handedness inventory: An analysis with models of the item response theory. Laterality: Asymmetries of Body, Brain and Cognition, 15(6), 610 628. https://doi.org/10.1080/13576500903081806
  • Clark, S. L. (2010). Mixture modeling with behavioral data (3405665) [Doctoral dissertation]. ProQuest Dissertations and Theses Global.
  • Cressie, N., & Read, T. R. C. (1984a). Multinomial Goodness-Of-Fit Tests. Journal of the Royal Statistical Society: Series B (Methodological), 46(3), 440 464. https://doi.org/10.1111/j.2517-6161.1984.tb01318.x
  • Dallas, A. D., & Willse, J. T. (2013). Survey analysis with mixture Rasch models. Journal of Applied Measurement,15(4), 394 404. https://europepmc.org/article/med/25232672
  • Fischer, G. H., & Molenaar, I. W. (Eds.). (2012). Rasch models: Foundations, recent developments, and applications. Springer Science & Business Media.
  • Frick, H., Strobl, C., & Zeileis, A. (2015). Rasch mixture models for DIF detection: A comparison of old and new score specifications. Educational and Psychological Measurement, 75(2), 208-234. https://doi.org/10.1177/0013164414536183
  • McCutcheon, A. L. (1987). Latent class analysis. SAGE.
  • Muthén, L. K., & Muthén, B. O. (2012a). Mplus (Version 7.31) [Computer Software]. Los Angeles, Muthén&Muthén.
  • Muthén, L. K., & Muthén, B. O. (1998). 2014. Mplus User’s Guide, 7th edition. Muthén & Muthén.
  • Nagin, D. (2005). Group-based modeling of development. Harvard University Press.
  • Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Danish Institute for Educational Research. https://doi.org/10.4135/9781412961288.n335
  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271 282. https://doi.org/10.1177/014662169001400305
  • Rutkowski, L., & Rutkowski, D. (2016). A call for a more measured approach to reporting and interpreting PISA results. Educational Researcher, 45(4), 252 257. https://doi.org/10.3102/0013189X16649961
  • Sigott, G. (2004). Towards identifying the C-Test construct. Peter Lang.
  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. CUP Archive.
  • Vermunt, J. K., & Magidson, J. (2004). Latent class analysis. The Sage Encyclopedia of Social Sciences Research Methods, 2, 549 553. Methods. https://doi.org/10.4135/9781412950589.n472
  • von Davier, M. (2001). WINMIRA [Computer software]. Institut für die Pädagogik der Naturwissenschaften
  • von Davier, M. (2001b). WINMIRA user manual [Computer software manual]. Institut für die Pädagogik der Naturwissenschaften
  • Wang, J., & Wang, X. (2019). Structural equation modeling: Applications using Mplus. John Wiley & Sons.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Alan Eğitimleri
Bölüm Makaleler
Yazarlar

Turker Toker Bu kişi benim 0000-0002-3038-7096

Kathy Green Bu kişi benim 0000-0002-0681-2937

Yayımlanma Tarihi 4 Aralık 2021
Gönderilme Tarihi 28 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Toker, T., & Green, K. (2021). A Comparison of Latent Class Analysis and the Mixture Rasch Model Using 8th Grade Mathematics Data in the Fourth International Mathematics and Science Study (TIMSS-2011). International Journal of Assessment Tools in Education, 8(4), 959-974. https://doi.org/10.21449/ijate.1024251

Cited By








23823             23825             23824