Araştırma Makalesi
BibTex RIS Kaynak Göster

Ek Beyaz LED Aydınlatma Uygulamalarının Biber Fidelerinin Kalite Özellikleri Üzerine Etkisi

Yıl 2024, , 322 - 332, 24.12.2024
https://doi.org/10.24180/ijaws.1554806

Öz

Çalışmanın amacı, gün içerisinde ışık şiddeti 100 μmol m-2 s-1'nin altına düştüğünde, gün doğumundan gün batımına kadar gün boyu doğal gün ışığına ve gün doğumundan önce 3 saat ve gün batımından sonra 3 saat (fotoperiyodun uzatıldığı) olmak üzere yapılan beyaz LED ek aydınlatma uygulamalarının biber fide kalitesi üzerine etkilerini belirlemektir. Ek aydınlatma uygulamaları, kontrol (hiçbir ek aydınlatmanın yapılmadığı doğal gün ışığı koşulları) uygulaması ile karşılaştırılmıştır. Çalışma, 2024 Mart ayında cam serada yürütülmüştür. Fide kalitesini belirlemek amacıyla fide boyu, gövde çapı, kök uzunluğu, gövde, kök ve toplam fide kuru ağırlıkları, yaprak alanı, yaprak klorofil içeriği ve stoma iletkenlik değerleri ölçülmüştür. Beyaz LED ek aydınlatma uygulamalarının kök uzunluğu, toplam fide kuru ağırlığı, gövde çapı, yaprak alanı, yaprak klorofil içeriği ve stoma iletkenlik değerleri kontrole göre istatistiksel olarak önemli düzeyde (p<0.05) yüksek bulunmuştur. Stoma iletkenliği ve yaprak klorofil içeriği haricinde çalışmada incelenen özellikler bakımından en yüksek değerler gün içerisinde ışık şiddeti 100 μmol m-2 s-1'nin altına düştüğünde yapılan ek ışık uygulamasından elde edilmiştir. Çalışmada, fotoperiyodun uzatılması yaprak klorofil içeriği ve stoma iletkenliğini artırırken, en kısa boylu bitkiler (5.95 cm) de bu uygulamadan elde edilmiştir. Gün içerisinde ışık şiddeti 100 μmol m-2 s-1 altına düştüğünde yapılan beyaz LED ek aydınlatma uygulamasının biber fide kalitesini önemli ölçüde artırdığı belirlenmiştir.

Etik Beyan

Gerek yok

Kaynakça

  • Anuchai, J., & Hsieh, C. H. (2017). Effect of change in light quality on physiological transformation of in vitro Phalaenopsis ‘Fortune Saltzman’ seedlings during the growth period. The Horticulture Journal, 86(3), 395-402. https://doi.org/10.2503/hortj.MI-151
  • Claypool, N. B., & Lieth, J. H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Scientia Horticulturae, 268, 109371. https://doi.org/10.1016/j.scienta.2020.109371
  • Clifford, S. C., Runkle, E. S., Langton, F. A., Mead, A., Foster, S. A., Pearson, S., & Heins, R. D. (2004). Height control of poinsettia using photoselective filters. HortScience, 39(2), 383-387. https://doi.org/10.21273/HORTSCI.39.2.383
  • Cookson, S. J., Van Lijsebettens, M., & Granier, C. (2005). Correlation between leaf growth variables suggest intrinsic and early controls of leaf size in Arabidopsis thaliana. Plant, Cell & Environment, 28(11), 1355-1366. https://doi.org/10.1111/j.1365-3040.2005.01368.x
  • Çopur, H., & Sarı, N. (2012). Sera hıyar fidesi üreticisi paclobutrazol ve bakır sülfat uygulamalarının fide büyümesi üzerine etkileri. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 1-12.
  • Demers, D. A., Dorais, M., Wien, C. H., & Gosselin, A. (1998). Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Scientia Horticulturae, 74(4), 295-306. https://doi.org/10.1016/S0304-4238(98)00097-1
  • Demir, K., Başak, H., Çakırer, G., & Başkent, A. (2020). Fidecilik sektörünün mevcut durumu ve gelecek öngörüleri. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-2, Türkiye.
  • Dyśko, J., & Kaniszewski, S. (2021). Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers. Horticultural Science, 48(1), 22-29. https://doi.org/10.17221/4/2020-HORTSCI
  • FAO (2022). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QC L [Erişim tarihi: 25.09.2024].
  • Fidebirlik (2022). Kuruluşundan bugüne fidebirlik. E-Bülten, Sayı 47. http://www.fidebirlik.org.tr/wp-content/uploads/2022/03/E-B%C3%9CLTEN-%C5%9EBT-2022.pdf) [Erişim tarihi: 20.08.2024].
  • Gao, S., Liu, X., Liu, Y., Cao, B., Chen, Z., & Xu, K. (2020). Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths. BMC Plant Biology, 20, 1-12. https://doi.org/10.1186/s12870-020-2282-0
  • He, J., Qin, L., Teo, L. J. L., & Wei, C. T. (2019). Nitrate accumulation, productivity and photosynthesis of Brassica alboglabra grown under low light with supplemental LED lighting in the tropical greenhouse. Journal of Plant Nutrition, 42(15), 1740-1749. https://doi.org/10.1080/01904167.2019.1643367
  • Hernández, R., Eguchi, T., Deveci, M., & Kubota, C. (2016). Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 213, 270-280. https://doi.org/10.1016/j.scienta.2016.11.005
  • Hernández, R., & Kubota, C. (2013). LEDs supplemental lighting for vegetable transplant production: Spectral evaluation and comparisons with HID technology. International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037 (pp. 829-835). https://doi.org/10.17660/ActaHortic.2014.1037.110
  • Izzo, L. G., Mele, B. H., Vitale, L., Vitale, E., & Arena, C. (2020). The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environmental and Experimental Botany, 179, 104195. https://doi.org/10.1016/j.envexpbot.2020.104195.
  • Kim, H. M., & Hwang, S. J. (2019). The growth and development of ‘mini chal’tomato plug seedlings grown under various wavelengths using light emitting diodes. Agronomy, 9(3), 157. https://doi.org/10.3390/agronomy9030157
  • Köksal, N., İncesu, M., & Teke, A. (2013). LED Aydınlatma sisteminin domates bitkisinin gelişimi üzerine etkileri. Tarım Bilimleri Araştırma Dergisi, 6(2), 71-75. https://www.ijans.org/index.php/ijans/article/view/271
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  • Li, F., Li, Y., Li, S., Wu, G., Niu, X., & Shen, A. (2021). Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings. Scientia Horticulturae, 289, 110503. https://doi.org/10.1016/j.scienta.2021.110503.
  • Li, H., Lu, X., Chen, J., & Jiang, R. (2023). Variation in growth, physiological characteristics of tomato seedlings exposed to different LEDs light quality. Pakistan Journal of Botany, 55(4), 1347-1352. http://dx.doi.org/10.30848/PJB2023-4(41)
  • Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  • Li, Y., Xin, G., Wei, M., Shi, Q., Yang, F., & Wang, X. (2017). Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae, 225, 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
  • Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. https://doi.org/10.1016/j.scienta.2012.10.002
  • Matsuda, R., Yamano, T., Murakami, K., & Fujiwara, K. (2016). Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Scientia Horticulturae, 198, 363-369. https://doi.org/10.1016/j.scienta.2015.11.045
  • Matsuo, S., Nanya, K., Imanishi, S., Honda, I., & Goto, E. (2019). Effects of blue and red lights on gibberellin metabolism in tomato seedlings. The Horticulture Journal, 88(1), 76-82. https://doi.org/10.2503/hortj.UTD-005
  • Ménard, C., Dorais, M., Hovi, T., & Gosselin, A. (2005). Developmental and physiological responses of tomato and cucumber to additional blue light. V. International Symposium on Artificial Lighting in Horticulture 711 (pp. 291-296). https://doi.org/10.17660/ActaHortic.2006.711.39
  • Özer, H. (2012). Organik Domates (Solanum lycopersium L.) Yetiştiriciliğinde Değişik Masura, Malç Tipi ve Organik Gübrelerin Büyüme, Gelişme, Verim ve Kalite Üzerine Etkileri. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Ana Bilim Dalı, Samsun. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Özer, H. (2018). The effects of different seedling production systems on quality of tomato plantlets. Acta Scientiarum Polonorum Hortorum Cultus, 17(5), 15-21. https://doi.org/10.24326/asphc.2018.5.2
  • Özer, H., & Kandemir, D. (2016). Evaluation of the performance of greenhouse tomato seedlings grown with different cultivation techniques. Bangladesh Journal of Botany, 1, 203-209.
  • Öztekin, G. B., & Türe, K. (2019). Tam Spektrumlu Gün Işığı Floresan Lamba ile Yapay Işıklandırmanın Marulda Fide Kalitesine Etkisi. Journal of Agriculture Faculty of Ege University, 56(4), 437-445. https://doi.org/10.20289/zfdergi.534300
  • Palmitessa, O. D., Prinzenberg, A. E., Kaiser, E., & Heuvelink, E. (2021). LED and HPS supplementary light differentially affect gas exchange in tomato leaves. Plants, 10(4), 810. https://doi.org/10.3390/plants10040810
  • Pan, T., Wang, Y., Wang, L., Ding, J., Cao, Y., Qin, G., Yan, L., Xi., L., Zhang, J., & Zou, Z. (2020). Increased CO2 and light intensity regulate growth and leaf gas exchange in tomato. Physiologia Plantarum, 168(3), 694-708. https://doi.org/10.1111/ppl.13015.
  • Paponov, M., Kechasov, D., Lacek, J., Verheul, M. J., & Paponov, I. A. (2020). Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Frontiers in Plant Science, 10, 1656. https://doi.org/10.3389/fpls.2019.01656
  • Rakutko, S., Rakutko, E., & Tranchuk, A. (2015). Comparative evaluation of tomato transplant growth parameters under led, fluorescent and high-pressure sodium lamps. Engineering for Rural Development, 222-229.
  • Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J., & Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339-343. https://doi.org/10.1007/s11738-007-0128-0
  • Soltani, S., Arouiee, H., Salehi, R., Nemati, S. H., Moosavi-Nezhad, M., Gruda, N. S., & Aliniaeifard, S. (2023). Morphological, phytochemical, and photosynthetic performance of grafted tomato seedlings in response to different LED light qualities under protected cultivation. Horticulturae, 9(4), 471. https://doi.org/10.3390/horticulturae9040471
  • Taiz, L., & Zeiger, E. (2008). Bitki fizyolojisi (Plant physiology). (Çev. İ. Türkan, 3. baskı), Palme Yayıncılık, Ankara. Tüzel, Y., Gül, A., Öztekin, G. B., Engindeniz, S., Boyacı, F., Duyar, H., Cebeci, E., & Durdu, T. (2020, Ocak 13-17). Türkiye’de örtüaltı yetiştiriciliği ve yeni gelişmeler. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, 13(17), 725-750, Türkiye.
  • Uçan, U., & Uğur, A. (2021). Acceleration of growth in tomato seedlings grown with growth retardant. Turkish Journal of Agriculture and Forestry, 45(5), 669-679. https://doi.org/10.3906/tar-2011-4
  • Wang, S., Meng, X., Tang, Z., Wu, Y., Xiao, X., Zhang, G., Hu, L., Liu, J, & Yu, J. (2022). Red and blue LED light supplementation in the morning pre-activates the photosynthetic system of tomato (Solanum lycopersicum L.) leaves and promotes plant growth. Agronomy, 12(4), 897. https://doi.org/10.3390/agronomy12040897
  • Wei, H., Wang, M., & Jeong, B. R. (2020). Effect of supplementary lighting duration on growth and activity of antioxidant enzymes in grafted watermelon seedlings. Agronomy, 10(3), 337. https://doi.org/10.3390/agronomy10030337
  • Wei, H., Zhao, J., Hu, J., & Jeong, B. R. (2019). Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy, 9(6), 339. https://doi.org/10.3390/agronomy9060339
  • Xu, Y., Chang, Y., Chen, G., & Lin, H. (2016). The research on LED supplementary lighting system for plants. Optik, 127(18), 7193-7201. https://doi.org/10.1016/j.ijleo.2016.05.056
  • Yamada, K., Honma, Y., Asahi, K. I., Sassa, T., Hino, K. I., & Tomoyasu, S. (2001). Differentiation of human acute myeloid leukaemia cells in primary culture in response to cotylenin A, a plant growth regulator. British Journal of Haematology, 114(4), 814-821. https://doi.org/10.1046/j.1365-2141.2001.03029.x
  • Yousef, A. F., Ali, M. M., Rizwan, H. M., Tadda, S. A., Kalaji, H. M., Yang, H., Ahmed, M. A. A., Wro bel, J., Xu, Y., & Chen, F. (2021). Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination. Plos one, 16(4), e0249373. https://doi.org/10.1371/journal.pone.0249373
  • Zhang, G., Li, Z., Cheng, J., Cai, X., Cheng, F., Yang, Y., & Yan, Z. (2022). Morphological and physiological traits of greenhouse-grown tomato seedlings as influenced by supplemental white plus red versus red plus blue LEDs. Agronomy, 12(10), 2450. https://doi.org/10.3390/agronomy12102450
  • Zheng, J., Gan, P., Ji, F., He, D., & Yang, P. (2021). Growth and energy use efficiency of grafted tomato transplants as affected by LED light quality and photon flux density. Agriculture, 11(9), 816. https://doi.org/10.3390/agriculture11090816
  • Zheng, Y., Zou, J., Lin, S., Jin, C., Shi, M., Yang, B., Yang, Y., Jin, D., Li, R., Li, Y., Wen, X., Yang, S., & Ding, X. (2023). Effects of different light intensity on the growth of tomato seedlings in a plant factory. Plos one, 18(11), e0294876. https://doi.org/10.1371/journal.pone.0294876
  • Zushi, K., Suehara, C., & Shirai, M. (2020). Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Scientia Horticulturae, 274, 109673. https://doi.org/10.1016/j.scienta.2020.109673.

Effect of Supplementary White LED Lighting Applications on Quality Characteristics of Pepper Seedlings

Yıl 2024, , 322 - 332, 24.12.2024
https://doi.org/10.24180/ijaws.1554806

Öz

The aim of the study was to determine the effects of supplementary white LED lighting applications on pepper seedling quality when the light intensity falls below 100 μmol m-2 s-1 during the day, compared to natural daylight throughout the day from sunrise to sunset, and from 3 hours before sunrise to 3 hours after sunset (extending the photoperiod). Supplementary lighting applications were compared with the control (daylight conditions without supplementary lighting). The study was carried out in a glass greenhouse in March 2024. To determine the seedling quality, seedling height, stem diameter, root length, stem, root and total seedling dry weights, leaf area, leaf chlorophyll content and stomatal conductance values were measured. Root length, total seedling dry weight, stem diameter, leaf area, leaf chlorophyll content and stomatal conductance values of different supplementary white LED lighting applications were statistically significantly (p<0.05) higher compared to the control. The highest values for the traits examined in the study, except for stomatal conductance and leaf chlorophyll content, were obtained from the supplementary light application when the light intensity fell below 100 μmol m-2 s-1 during the day. In the study, while the photoperiod extension increased the leaf chlorophyll content and stomatal conductance, the shortest plants (5.95 cm) were also obtained from this application. It was determined that the supplementary white LED lighting application significantly increased the pepper seedling quality when the light intensity fell below 100 μmol m-2 s-1 during the day.

Kaynakça

  • Anuchai, J., & Hsieh, C. H. (2017). Effect of change in light quality on physiological transformation of in vitro Phalaenopsis ‘Fortune Saltzman’ seedlings during the growth period. The Horticulture Journal, 86(3), 395-402. https://doi.org/10.2503/hortj.MI-151
  • Claypool, N. B., & Lieth, J. H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Scientia Horticulturae, 268, 109371. https://doi.org/10.1016/j.scienta.2020.109371
  • Clifford, S. C., Runkle, E. S., Langton, F. A., Mead, A., Foster, S. A., Pearson, S., & Heins, R. D. (2004). Height control of poinsettia using photoselective filters. HortScience, 39(2), 383-387. https://doi.org/10.21273/HORTSCI.39.2.383
  • Cookson, S. J., Van Lijsebettens, M., & Granier, C. (2005). Correlation between leaf growth variables suggest intrinsic and early controls of leaf size in Arabidopsis thaliana. Plant, Cell & Environment, 28(11), 1355-1366. https://doi.org/10.1111/j.1365-3040.2005.01368.x
  • Çopur, H., & Sarı, N. (2012). Sera hıyar fidesi üreticisi paclobutrazol ve bakır sülfat uygulamalarının fide büyümesi üzerine etkileri. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 1-12.
  • Demers, D. A., Dorais, M., Wien, C. H., & Gosselin, A. (1998). Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Scientia Horticulturae, 74(4), 295-306. https://doi.org/10.1016/S0304-4238(98)00097-1
  • Demir, K., Başak, H., Çakırer, G., & Başkent, A. (2020). Fidecilik sektörünün mevcut durumu ve gelecek öngörüleri. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-2, Türkiye.
  • Dyśko, J., & Kaniszewski, S. (2021). Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers. Horticultural Science, 48(1), 22-29. https://doi.org/10.17221/4/2020-HORTSCI
  • FAO (2022). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QC L [Erişim tarihi: 25.09.2024].
  • Fidebirlik (2022). Kuruluşundan bugüne fidebirlik. E-Bülten, Sayı 47. http://www.fidebirlik.org.tr/wp-content/uploads/2022/03/E-B%C3%9CLTEN-%C5%9EBT-2022.pdf) [Erişim tarihi: 20.08.2024].
  • Gao, S., Liu, X., Liu, Y., Cao, B., Chen, Z., & Xu, K. (2020). Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths. BMC Plant Biology, 20, 1-12. https://doi.org/10.1186/s12870-020-2282-0
  • He, J., Qin, L., Teo, L. J. L., & Wei, C. T. (2019). Nitrate accumulation, productivity and photosynthesis of Brassica alboglabra grown under low light with supplemental LED lighting in the tropical greenhouse. Journal of Plant Nutrition, 42(15), 1740-1749. https://doi.org/10.1080/01904167.2019.1643367
  • Hernández, R., Eguchi, T., Deveci, M., & Kubota, C. (2016). Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 213, 270-280. https://doi.org/10.1016/j.scienta.2016.11.005
  • Hernández, R., & Kubota, C. (2013). LEDs supplemental lighting for vegetable transplant production: Spectral evaluation and comparisons with HID technology. International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037 (pp. 829-835). https://doi.org/10.17660/ActaHortic.2014.1037.110
  • Izzo, L. G., Mele, B. H., Vitale, L., Vitale, E., & Arena, C. (2020). The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environmental and Experimental Botany, 179, 104195. https://doi.org/10.1016/j.envexpbot.2020.104195.
  • Kim, H. M., & Hwang, S. J. (2019). The growth and development of ‘mini chal’tomato plug seedlings grown under various wavelengths using light emitting diodes. Agronomy, 9(3), 157. https://doi.org/10.3390/agronomy9030157
  • Köksal, N., İncesu, M., & Teke, A. (2013). LED Aydınlatma sisteminin domates bitkisinin gelişimi üzerine etkileri. Tarım Bilimleri Araştırma Dergisi, 6(2), 71-75. https://www.ijans.org/index.php/ijans/article/view/271
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  • Li, F., Li, Y., Li, S., Wu, G., Niu, X., & Shen, A. (2021). Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings. Scientia Horticulturae, 289, 110503. https://doi.org/10.1016/j.scienta.2021.110503.
  • Li, H., Lu, X., Chen, J., & Jiang, R. (2023). Variation in growth, physiological characteristics of tomato seedlings exposed to different LEDs light quality. Pakistan Journal of Botany, 55(4), 1347-1352. http://dx.doi.org/10.30848/PJB2023-4(41)
  • Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  • Li, Y., Xin, G., Wei, M., Shi, Q., Yang, F., & Wang, X. (2017). Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae, 225, 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
  • Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. https://doi.org/10.1016/j.scienta.2012.10.002
  • Matsuda, R., Yamano, T., Murakami, K., & Fujiwara, K. (2016). Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Scientia Horticulturae, 198, 363-369. https://doi.org/10.1016/j.scienta.2015.11.045
  • Matsuo, S., Nanya, K., Imanishi, S., Honda, I., & Goto, E. (2019). Effects of blue and red lights on gibberellin metabolism in tomato seedlings. The Horticulture Journal, 88(1), 76-82. https://doi.org/10.2503/hortj.UTD-005
  • Ménard, C., Dorais, M., Hovi, T., & Gosselin, A. (2005). Developmental and physiological responses of tomato and cucumber to additional blue light. V. International Symposium on Artificial Lighting in Horticulture 711 (pp. 291-296). https://doi.org/10.17660/ActaHortic.2006.711.39
  • Özer, H. (2012). Organik Domates (Solanum lycopersium L.) Yetiştiriciliğinde Değişik Masura, Malç Tipi ve Organik Gübrelerin Büyüme, Gelişme, Verim ve Kalite Üzerine Etkileri. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Ana Bilim Dalı, Samsun. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Özer, H. (2018). The effects of different seedling production systems on quality of tomato plantlets. Acta Scientiarum Polonorum Hortorum Cultus, 17(5), 15-21. https://doi.org/10.24326/asphc.2018.5.2
  • Özer, H., & Kandemir, D. (2016). Evaluation of the performance of greenhouse tomato seedlings grown with different cultivation techniques. Bangladesh Journal of Botany, 1, 203-209.
  • Öztekin, G. B., & Türe, K. (2019). Tam Spektrumlu Gün Işığı Floresan Lamba ile Yapay Işıklandırmanın Marulda Fide Kalitesine Etkisi. Journal of Agriculture Faculty of Ege University, 56(4), 437-445. https://doi.org/10.20289/zfdergi.534300
  • Palmitessa, O. D., Prinzenberg, A. E., Kaiser, E., & Heuvelink, E. (2021). LED and HPS supplementary light differentially affect gas exchange in tomato leaves. Plants, 10(4), 810. https://doi.org/10.3390/plants10040810
  • Pan, T., Wang, Y., Wang, L., Ding, J., Cao, Y., Qin, G., Yan, L., Xi., L., Zhang, J., & Zou, Z. (2020). Increased CO2 and light intensity regulate growth and leaf gas exchange in tomato. Physiologia Plantarum, 168(3), 694-708. https://doi.org/10.1111/ppl.13015.
  • Paponov, M., Kechasov, D., Lacek, J., Verheul, M. J., & Paponov, I. A. (2020). Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Frontiers in Plant Science, 10, 1656. https://doi.org/10.3389/fpls.2019.01656
  • Rakutko, S., Rakutko, E., & Tranchuk, A. (2015). Comparative evaluation of tomato transplant growth parameters under led, fluorescent and high-pressure sodium lamps. Engineering for Rural Development, 222-229.
  • Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J., & Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339-343. https://doi.org/10.1007/s11738-007-0128-0
  • Soltani, S., Arouiee, H., Salehi, R., Nemati, S. H., Moosavi-Nezhad, M., Gruda, N. S., & Aliniaeifard, S. (2023). Morphological, phytochemical, and photosynthetic performance of grafted tomato seedlings in response to different LED light qualities under protected cultivation. Horticulturae, 9(4), 471. https://doi.org/10.3390/horticulturae9040471
  • Taiz, L., & Zeiger, E. (2008). Bitki fizyolojisi (Plant physiology). (Çev. İ. Türkan, 3. baskı), Palme Yayıncılık, Ankara. Tüzel, Y., Gül, A., Öztekin, G. B., Engindeniz, S., Boyacı, F., Duyar, H., Cebeci, E., & Durdu, T. (2020, Ocak 13-17). Türkiye’de örtüaltı yetiştiriciliği ve yeni gelişmeler. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, 13(17), 725-750, Türkiye.
  • Uçan, U., & Uğur, A. (2021). Acceleration of growth in tomato seedlings grown with growth retardant. Turkish Journal of Agriculture and Forestry, 45(5), 669-679. https://doi.org/10.3906/tar-2011-4
  • Wang, S., Meng, X., Tang, Z., Wu, Y., Xiao, X., Zhang, G., Hu, L., Liu, J, & Yu, J. (2022). Red and blue LED light supplementation in the morning pre-activates the photosynthetic system of tomato (Solanum lycopersicum L.) leaves and promotes plant growth. Agronomy, 12(4), 897. https://doi.org/10.3390/agronomy12040897
  • Wei, H., Wang, M., & Jeong, B. R. (2020). Effect of supplementary lighting duration on growth and activity of antioxidant enzymes in grafted watermelon seedlings. Agronomy, 10(3), 337. https://doi.org/10.3390/agronomy10030337
  • Wei, H., Zhao, J., Hu, J., & Jeong, B. R. (2019). Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy, 9(6), 339. https://doi.org/10.3390/agronomy9060339
  • Xu, Y., Chang, Y., Chen, G., & Lin, H. (2016). The research on LED supplementary lighting system for plants. Optik, 127(18), 7193-7201. https://doi.org/10.1016/j.ijleo.2016.05.056
  • Yamada, K., Honma, Y., Asahi, K. I., Sassa, T., Hino, K. I., & Tomoyasu, S. (2001). Differentiation of human acute myeloid leukaemia cells in primary culture in response to cotylenin A, a plant growth regulator. British Journal of Haematology, 114(4), 814-821. https://doi.org/10.1046/j.1365-2141.2001.03029.x
  • Yousef, A. F., Ali, M. M., Rizwan, H. M., Tadda, S. A., Kalaji, H. M., Yang, H., Ahmed, M. A. A., Wro bel, J., Xu, Y., & Chen, F. (2021). Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination. Plos one, 16(4), e0249373. https://doi.org/10.1371/journal.pone.0249373
  • Zhang, G., Li, Z., Cheng, J., Cai, X., Cheng, F., Yang, Y., & Yan, Z. (2022). Morphological and physiological traits of greenhouse-grown tomato seedlings as influenced by supplemental white plus red versus red plus blue LEDs. Agronomy, 12(10), 2450. https://doi.org/10.3390/agronomy12102450
  • Zheng, J., Gan, P., Ji, F., He, D., & Yang, P. (2021). Growth and energy use efficiency of grafted tomato transplants as affected by LED light quality and photon flux density. Agriculture, 11(9), 816. https://doi.org/10.3390/agriculture11090816
  • Zheng, Y., Zou, J., Lin, S., Jin, C., Shi, M., Yang, B., Yang, Y., Jin, D., Li, R., Li, Y., Wen, X., Yang, S., & Ding, X. (2023). Effects of different light intensity on the growth of tomato seedlings in a plant factory. Plos one, 18(11), e0294876. https://doi.org/10.1371/journal.pone.0294876
  • Zushi, K., Suehara, C., & Shirai, M. (2020). Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Scientia Horticulturae, 274, 109673. https://doi.org/10.1016/j.scienta.2020.109673.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sebze Yetiştirme ve Islahı
Bölüm Bahçe Bitkileri
Yazarlar

Yüksel Atakan Bal 0009-0003-2040-6091

Aslıhan Çilingir Tütüncü 0000-0002-7752-8976

Harun Özer 0000-0001-9106-383X

Aysun Pekşen 0000-0002-9601-5041

Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi 24 Aralık 2024
Gönderilme Tarihi 23 Eylül 2024
Kabul Tarihi 11 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bal, Y. A., Çilingir Tütüncü, A., Özer, H., Pekşen, A. (2024). Ek Beyaz LED Aydınlatma Uygulamalarının Biber Fidelerinin Kalite Özellikleri Üzerine Etkisi. International Journal of Agricultural and Wildlife Sciences, 10(3), 322-332. https://doi.org/10.24180/ijaws.1554806

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a