Araştırma Makalesi
BibTex RIS Kaynak Göster

Sentetik ve Modern Ekmeklik Buğday Genotiplerinin (Triticum aestivum L.) Verim ve Kalite Özelliklerinin Karşılaştırılması

Yıl 2017, Cilt: 3 Sayı: 1, 25 - 32, 29.05.2017
https://doi.org/10.24180/ijaws.309693

Öz

Bu çalışma, kışlık
gelişme tabiatına sahip 14 modern ekmeklik ve 11 sentetik buğday genotipinin tane
verimi ve bazı kalite özellikleri bakımından karşılaştırılması amacıyla 2014-15
ve 2015-16 yetiştirme sezonlarında Elazığ ili sulu şartlarında yürütülmüştür. Denemeler
tesadüf blokları deneme deseninde 3 tekerrürlü olarak kurulmuş, birleştirilmiş
varyans analiz sonuçlarına göre incelenen tüm özellikler bakımından genotipler
arasındaki fark 0.01 düzeyinde istatistiki olarak önemli bulunmuştur. İki
yıllık ortalama sonuçlara göre, sentetik ve modern ekmeklik buğday
genotiplerinin tane verimi ortalaması sırasıyla 720 ve 707 kg da-1;
bin tane ağırlığı için 41.42 ve 37.35 g; protein oranı için %10.71 ve %10.79;
yaş gluten değeri %31.7 ve %30.7 olarak tespit edilmiştir. Çalışmada sentetik
buğday genotipleri bin tane ağırlığı bakımından daha üstün özelliğe sahipken,
tane verimi bakımından daha yüksek bir ortalamaya sahip olmalarına rağmen bariz
bir üstünlük tespit edilememiştir. ANOVA ve GGE biplot analizleri sonucuna göre
sentetik buğday genotipi S-4’ün bin tane, yaş gluten ve protein özellikleri
bakımından, modern ekmeklik buğday genotipi M-3’ün ise zeleny sedimantasyon ve
hektolitre özellikleri için en ideal değerlere sahip olduğu tespit edilmiştir.
Çalışma sonucunda sentetik buğday genotiplerinin tane verimi ve kalite
özellikleri bakımından iyi bir potansiyele sahip olmakla beraber, dikkatli ve
etkili bir seleksiyon ile modern ekmeklik buğday genotiplerinden daha üstün
özelliklere sahip sentetik buğday genotiplerin belirlenebileceği ve bu konuda
daha kapsamlı çalışmaların yapılması gerektiği sonucuna varılmıştır.

Kaynakça

  • Aguirre A., Badiali O., Cantarero M., Leon A., Ribotta P and Rubido O., 2002. Relationship of test weight and kernel properties to milling and baking quality in argentine triticales. Cereal Research Communications, 30: 1-2.
  • Aktaş H., 2014. Güneydoğu Anadolu şartlarında bazı ekmeklik buğday çeşitlerinin kalite yönüyle stabilite yetenekleri ve mikro element içeriklerinin araştırılması. Doktora Tezi (Basılmamış), Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Hatay.
  • Anonim, 1982. ICC-Standart No:115/1. International Association for Cereal Chemistry, 1982.
  • Anonim, 1990. AACC Approved Methods of the American Association of Cereal Chemist, USA.
  • Anonim, 1994. ICC No: 155. International Association for Cereal Chemistry, 1982.
  • Baloch FS., Karaköy T., Demirbaş A., Toklu F., Özkan H and Hatipoğlu R., 2014. Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal Agriculture and Foresty, 38: 591-602.
  • Baloch FS., Alsaleh A., Shadid MQ., Çiftçi V., Miera LES., Aasim M., Nadeem MA., Aktaş H., Özkan H and Hatipoğlu R., 2017. A Whole Genome DArT seq and SNP analysis for genetic diversity assessment in durum wheat from Central Fertile Crescent. Plos one, 12(1): 1-18.
  • Cornish GB., Bekes F., Eagles HA and Payne PI., 2006. Prediction of dough properties for bread wheat. In Gliadin and glutenin: The unique Balance of Wheat (Eds. C Wrigley, F Bekes and W Bushuk), St Paul Minn press, pp. 143-155.
  • Cox TS., Sears RG., Bequette RK and Martin TJ., 1995. Germplasm enhancement in winter wheat Triticum tauschii backcross populations. Crop Science, 35: 913-919.
  • Dreccer FM., Borgognone GM., Ogbonnaya FC., Trethowan, RM and Winter B., 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Research, 100: 218-228.
  • Gedye KR., Morris CF., Bettge AD., Freston MJ and King GE., 2004. Synthetic hexaploid wheats can expand the range of purioindoline haplotypes and kernel texture in Triticum aestivum. Proceedings of 54th Australian Cereal Chemistry Conference and 11th Wheat Breeders Assembly, 21 -24 Semtemper, Australia. Hajjar R and Hodgkin T., 2007. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156: 1-13.
  • Kaya Y and Akçura M., 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Science Technology Campinas, 34(2): 386-393.
  • Kılıç H., Akçura M and Aktaş H., 2010. Assessment of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in multi-environments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 271-279.
  • Lage J., Skovmand B., Peña RJ and Andersen SB., 2006. Grain quality of Emmer wheat derived synthetic hexaploid wheats. Genetic Resources and Crop Evolution, 53: 955-962.
  • Lage J and Trethowan RM., 2008. CIMMYT's use of synthetic hexaploid wheat in breeding for adaptation to rainfed environments globally. Australian Journal of Agriculture Research, 59: 461-469.
  • Luo M., Yang Z and Zhang H., 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97: 657-670.
  • Mujeeb-Kazi A., Rosas V and Roldan S., 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmal. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. · T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolation, 43: 129-134.
  • Ogbonnaya FC., Ye G., Trethowan R., Dreccer F., Sheppard J and Van Ginkel M., 2006. Yield of synthetic backcross- derived lines in rainfed environments of Australia. Euphytica, 157: 321- 332.
  • Pask AJD., Pietragalla J., Mullan DM and Reynolds MP., 2012. Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico City, Mexico: CIMMY.
  • Pena RJ., Skovmand B and Amaya A., 1993. Glutenin (HMW and LMW-) Subunit Composition, Quality Characteristics and Their Relationship in Triticum dicoccon Populations. 8th International Wheat Genetics Symposium, 20-25 July, Beijing, China.
  • Pena RJ., Cervantes- Espinosa MI., Posads G., Ortiz-monasterio JI and Dubat A., 2007. Gluten composition, gluten quality, and dought properies (National – Mixograph; Chopin –Mixolab) of high yielding wheats derived from crosses between common (T. aestivum) and synthetic ( Triticum dicoccum x Aeligops Taushii) wheats. Journal of Cereal Science, 78: 243-249.
  • Rahman MM., Hossain A., Hakim MA and Kabir MR and Shah MMR., 2009. Performance of wheat genotypes under optimum and late sowing condition. International Journal of Sustain Crop Production, 4(6): 34-39.
  • Şahin M., Göçmen A ve Aydoğan S., 2004. Ekmeklik buğdayda Mini SDS (Sodyum Dodesil Sülfat) sedimantasyon testi ile bazı kalite özellikleri arasındaki ilişkilerin belirlenmesi. Bitkisel Araştırma Dergisi, 2: 1-5.
  • Valkoun JJ., 2001. Wheat pre-breeding using wild progenitors. Euphytica, 119: 17-23.
  • Van-Ginkel M and Ogbonnaya F., 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crop Research, 104: 86-94.
  • Yan W Hunt LA., Sheng Q and Szlavnics Z., 2000. Cultivar evaluation and mega environment investigation based on the GGE biplot. Crop Science, 40: 597-605.
  • Yueming Y., Hsam SLK., Jianzhong Y., Jiang Y and Zeller F.J., 2003. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica, 130: 377-385.

Comparasion Grain Yield and Quality Traits of Synthetic and Modern Wheat Genotypes (Triticum aestivum L.)

Yıl 2017, Cilt: 3 Sayı: 1, 25 - 32, 29.05.2017
https://doi.org/10.24180/ijaws.309693

Öz

This study was conducted
in 2014-15 and 2015-16 seasons under irrigation condition of Elazığ province to
compare 14 modern hexaploid and 11 sythetic wheat genotypes regarding to grain
yield and some quality traits. Experiment was performed in randomized
complete-block design with three replications.
According to combined variance analysis
statistically significant differences (P<0.05 or P<0.01) were determined
for all examined traits of genotypes. According to mean of two years; examined
traits of synthetic and modern hexaploid wheat were 720 and 707 kg da-1
for grain yield; 41.42 and 37.35 for thousand kernel weight; 10.71 and 10.70%
for protein content; 31.7 and 30.7% for wet gluten respectively. Results
indicated that synthetic wheat genotypes had desirable value for thousand
kernel weight compare to modern hexaploid wheat genotypes. Although mean grain
yield of synthetic wheat was higher but difference between two groups was very
small. ANOVA and GGE biplot analysis also indicated that synthetic wheat genotype
S-4 was superior for thousand kernel weight, wet gluten and protein content,
while modern bread wheat genotype M-3 showed higher value for zeleny
sedimentation and test weight.
Study concluded
that synthetic wheat had potential for grain yield and quality traits careful
and efficient selection need to determine superior synthetic wheat genotypes. Also,
further study should be conducted related to synthetic wheats.

Kaynakça

  • Aguirre A., Badiali O., Cantarero M., Leon A., Ribotta P and Rubido O., 2002. Relationship of test weight and kernel properties to milling and baking quality in argentine triticales. Cereal Research Communications, 30: 1-2.
  • Aktaş H., 2014. Güneydoğu Anadolu şartlarında bazı ekmeklik buğday çeşitlerinin kalite yönüyle stabilite yetenekleri ve mikro element içeriklerinin araştırılması. Doktora Tezi (Basılmamış), Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Hatay.
  • Anonim, 1982. ICC-Standart No:115/1. International Association for Cereal Chemistry, 1982.
  • Anonim, 1990. AACC Approved Methods of the American Association of Cereal Chemist, USA.
  • Anonim, 1994. ICC No: 155. International Association for Cereal Chemistry, 1982.
  • Baloch FS., Karaköy T., Demirbaş A., Toklu F., Özkan H and Hatipoğlu R., 2014. Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal Agriculture and Foresty, 38: 591-602.
  • Baloch FS., Alsaleh A., Shadid MQ., Çiftçi V., Miera LES., Aasim M., Nadeem MA., Aktaş H., Özkan H and Hatipoğlu R., 2017. A Whole Genome DArT seq and SNP analysis for genetic diversity assessment in durum wheat from Central Fertile Crescent. Plos one, 12(1): 1-18.
  • Cornish GB., Bekes F., Eagles HA and Payne PI., 2006. Prediction of dough properties for bread wheat. In Gliadin and glutenin: The unique Balance of Wheat (Eds. C Wrigley, F Bekes and W Bushuk), St Paul Minn press, pp. 143-155.
  • Cox TS., Sears RG., Bequette RK and Martin TJ., 1995. Germplasm enhancement in winter wheat Triticum tauschii backcross populations. Crop Science, 35: 913-919.
  • Dreccer FM., Borgognone GM., Ogbonnaya FC., Trethowan, RM and Winter B., 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Research, 100: 218-228.
  • Gedye KR., Morris CF., Bettge AD., Freston MJ and King GE., 2004. Synthetic hexaploid wheats can expand the range of purioindoline haplotypes and kernel texture in Triticum aestivum. Proceedings of 54th Australian Cereal Chemistry Conference and 11th Wheat Breeders Assembly, 21 -24 Semtemper, Australia. Hajjar R and Hodgkin T., 2007. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156: 1-13.
  • Kaya Y and Akçura M., 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Science Technology Campinas, 34(2): 386-393.
  • Kılıç H., Akçura M and Aktaş H., 2010. Assessment of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in multi-environments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 271-279.
  • Lage J., Skovmand B., Peña RJ and Andersen SB., 2006. Grain quality of Emmer wheat derived synthetic hexaploid wheats. Genetic Resources and Crop Evolution, 53: 955-962.
  • Lage J and Trethowan RM., 2008. CIMMYT's use of synthetic hexaploid wheat in breeding for adaptation to rainfed environments globally. Australian Journal of Agriculture Research, 59: 461-469.
  • Luo M., Yang Z and Zhang H., 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97: 657-670.
  • Mujeeb-Kazi A., Rosas V and Roldan S., 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmal. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. · T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolation, 43: 129-134.
  • Ogbonnaya FC., Ye G., Trethowan R., Dreccer F., Sheppard J and Van Ginkel M., 2006. Yield of synthetic backcross- derived lines in rainfed environments of Australia. Euphytica, 157: 321- 332.
  • Pask AJD., Pietragalla J., Mullan DM and Reynolds MP., 2012. Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico City, Mexico: CIMMY.
  • Pena RJ., Skovmand B and Amaya A., 1993. Glutenin (HMW and LMW-) Subunit Composition, Quality Characteristics and Their Relationship in Triticum dicoccon Populations. 8th International Wheat Genetics Symposium, 20-25 July, Beijing, China.
  • Pena RJ., Cervantes- Espinosa MI., Posads G., Ortiz-monasterio JI and Dubat A., 2007. Gluten composition, gluten quality, and dought properies (National – Mixograph; Chopin –Mixolab) of high yielding wheats derived from crosses between common (T. aestivum) and synthetic ( Triticum dicoccum x Aeligops Taushii) wheats. Journal of Cereal Science, 78: 243-249.
  • Rahman MM., Hossain A., Hakim MA and Kabir MR and Shah MMR., 2009. Performance of wheat genotypes under optimum and late sowing condition. International Journal of Sustain Crop Production, 4(6): 34-39.
  • Şahin M., Göçmen A ve Aydoğan S., 2004. Ekmeklik buğdayda Mini SDS (Sodyum Dodesil Sülfat) sedimantasyon testi ile bazı kalite özellikleri arasındaki ilişkilerin belirlenmesi. Bitkisel Araştırma Dergisi, 2: 1-5.
  • Valkoun JJ., 2001. Wheat pre-breeding using wild progenitors. Euphytica, 119: 17-23.
  • Van-Ginkel M and Ogbonnaya F., 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crop Research, 104: 86-94.
  • Yan W Hunt LA., Sheng Q and Szlavnics Z., 2000. Cultivar evaluation and mega environment investigation based on the GGE biplot. Crop Science, 40: 597-605.
  • Yueming Y., Hsam SLK., Jianzhong Y., Jiang Y and Zeller F.J., 2003. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica, 130: 377-385.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Bölüm Tarla Bitkileri
Yazarlar

Hüsnü Aktaş

Mehmet Karaman

İrfan Erdemci

Enver Kendal

Sertaç Tekdal

Hasan Kılıç Bu kişi benim

Erol Oral

Yayımlanma Tarihi 29 Mayıs 2017
Gönderilme Tarihi 28 Nisan 2017
Kabul Tarihi 22 Mayıs 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 1

Kaynak Göster

APA Aktaş, H., Karaman, M., Erdemci, İ., Kendal, E., vd. (2017). Comparasion Grain Yield and Quality Traits of Synthetic and Modern Wheat Genotypes (Triticum aestivum L.). International Journal of Agricultural and Wildlife Sciences, 3(1), 25-32. https://doi.org/10.24180/ijaws.309693

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a