: In this study, the effect of the 22 glutenin subunit encoded by the Glu-B1k allele on the chromosome B on the quality of wheat was investigated. Nevzatbey and a genotype of Triticum aestivum L. subsp. sphaerococcum were used as parents and produced the near-isogenic lines (NILs) in the generation of BC4F3. Plant morphological traits and protein content, sedimentation volume, lactic acid solvent retention capacity (SRC), and glutenin swelling index (GSI) of the NILs were determined. The mean protein content of the NILs carrying 22 glutenin subunit was higher than that of the NILs carrying the 7+9 glutenin subunit (20.4% and 16.2%, respectively). In contrast, the NILs with 22 glutenin subunit had a lower sedimentation volume than those of the NILs with 7+9 glutenin subunits. The 22 glutenin subunit decreased the sedimentation volume from 19.47 to 13.49 mL. The average GSI value of the NILs carrying 7+9 glutenin subunits was higher than that of the NILs carrying 22 glutenin subunit (3.05 and 2.92). In conclusion, in this study we were able to detect a quality difference between NILs with 22 and 7+9 glutenin subunits in a small amount of samples. These findings suggest that glutenin subunit 22 may be associated with low gluten strength.
Alvarez, J. B., & Guzmán, C. (2019). Recovery of wheat heritage for traditional food: Genetic variation for high molecular weight glutenin subunits in neglected/underutilized wheat. Agronomy, 9(11), 755. https://doi.org/10.3390/agronomy9110755
Asri, N., Rostami-Nejad, M., Anderson, R. P., & Rostami, K. (2021). The gluten gene: unlocking the understanding of gluten sensitivity and intolerance. The Application Of Clinical Genetics, 14, 37. DOI: 10.2147/TACG.S276596
Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., & Gourdon, J. (2001). Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 119(1), 59-67. https://doi.org/10.1023/A:1017586220359
Day, L. (2011). Wheat gluten: production, properties and application. In Handbook of food proteins (pp. 267-288). Woodhead Publishing
Filip, E. (2018). Composition of high molecular weight glutenin subunits in polish common wheat cultivars (Triticum aestivum L.). Journal of Food Quality, Article ID 2473420. https://doi.org/10.1155/2018/2473420
Guzman, C., Posadas-Romano, G., Hernandez-Espinosa, A., Morales- Dorantes, A., & Peña, R. J. (2015). A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread-making quality. Journal of Cereal Science, 66, 59-65. https://doi.org/10.1016/j.jcs.2015.10.009
Guzman, C., Peña, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., Rutkoski, J., Poland, J., & Battenfield, S. (2016a). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004
Guzman, C., Mondal, S., Govindan, V., Autrique, J. E., Posadas-Romano, G., Cervantes, F., Crossa, J., Vargas, M., Singh, R. V., & Peña, R. J. (2016b). Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT-Food Science and Technology, 69, 327–333. https://doi.org/10.1016/j.lwt.2016.01.068
Guzman, C., Crossa, J., Mondal, S., Govindan, V., Huerta, J., Crespo-Herrera, L., Vargas, M. P., Singh, R., & Ibba, M. I. (2022). Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines, Field Crops Research, 284, 108585. https://doi.org/10.1016/j.fcr.2022.108585
JMP. 2013. 13.0.0. Scintilla - Copyright (C) 1998-2014 by Neil Hodgson;neilh@scintilla. Org SAS Institute. JMP 13.0 users guide. Carry, NC: Release SAS Institute Inc.
Karaduman, Y. (2020). Assessing gluten strength with a new small‐scale LASRC method useful for soft wheat breeding programs. Cereal Chemistry, 97 (2), 196-204. https://doi.org/10.1002/cche.10235
Karaduman, Y., Yeşildağ, Z. S., & Akın, A. (2022). Evaluating selection efficacy of high molecular weight glutenin subunits (HMWGs) by relating gluten quality parameters. LWT-Food Science and Technology, 155, 112949. https://doi.org/10.1016/j.lwt.2021.112949
Kweon, M., Slade, L., & Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding – a Review., Cereal Chemistry, 88, 537–552. https:// doi.org/10.1094/CCHEM-07-11-0092
Labuschagne, M., Guzmán, C., Phakela, K., Wentzel, B., & van Biljon, A. (2021). Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants, 10, 1000. https://doi.org/10.3390/plants10051000
Lei, Z. S., Gale, K. R., He, Z. H., Gianibelli, C., Larroque, O., Xia, X. C., Butow, B. J., & Ma, W. (2006). Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 43(1), 94-101. https://doi.org/10.1016/j.jcs.2005.08.003
Li, Y., Fu, J., Shen, Q., & Yang, D. (2020). High-molecular-weight glutenin subunits: Genetics, structures, and relation to end use qualities. International Journal of Molecular Sciences, 22(1), 184. https://doi.org/10.3390/ijms22010184
Nakamura, H. (2000). Allelic variation at high-molecular-weight glutenin subunit Loci, Glu-A1, Glu-B1 and Glu-D1, in Japanese and Chinese hexaploid wheats. Euphytica, 112(2), 187-193. https://doi.org/10.1023/A:1003888116674
Patterson, H. D., & Hunter, E. A. (1983). The efficiency of incomplete block designs in National List and Recommended List cereal variety trials. The Journal of Agricultural Science, 101(2), 427-433. https://doi.org/10.1017/S002185960003776X
Payne, P. I., Law, C. N., & Mudd, E. E. (1980). Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics, 58, 113–120. https://doi.org/ 10.1007/BF00263101
Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between HMW glutenin subunit composition and the bread‐making quality of British‐grown wheat varieties. Journal of the Science of Food and Agriculture, 40(1), 51-65. https://doi.org/10.1002/jsfa.2740400108
Pena, R. J. (2002). Wheat for bread and other foods. Bread wheat improvement and production. Food and Agriculture Organization of the United Nations. Rome, 483-542
Peng, Y., Yu, K., Zhang, Y., Islam, S., Sun, D., & Ma, W. (2015). Two novel y-type high molecular weight glutenin genes in Chinese wheat landraces of the Yangtze-River region. PLoS One, 10(11), e0142348. https://doi.org/10.1371/journal.pone.0142348
Perten, H., Bondesson, K., & Mjorndal, A. (1992). Gluten index variations in commercial Swedish wheat samples. Cereal Foods World. 37, 655-660.
Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering, 72(2), 167-178. https://doi.org/10.1016/j.jfoodeng.2004.11.033
Sharma, A., Garg, S., Sheikh, I., Vyas, P., & Dhaliwal, H. S. (2020). Effect of wheat grain protein composition on end-use quality. Journal of Food Science and Technology, 57(8), 2771-2785. 10.1007/s13197-019-04222-6
Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947-958. https://doi.org/10.1093/jexbot/53.370.947
Wang, C., Kovacs, & M. I. P. (2002). Swelling index of glutenin test. II. Application in prediction of dough properties and end‐use quality. Cereal Chemistry, 79(2), 190-196. https://doi.org/10.1094/CCHEM.2002.79.2.190
Wanous, M., Munkvold, J., Kruse, J., Brachman, E., Klawiter, M., & Fuehrer, K. (2003). Identification of chromosome arms influencing expression of the HMW glutenins in wheat. Theoretical and Applied Genetics, 106(2), 213-220. https://doi.org/10.1007/s00122-002-1098-7
Glu-B1k Alleli Tarafından Kodlanan Yüksek Moleküler Ağırlıklı Glutenin Alt Biriminin Ekmeklik Buğday Yakın İzogenik Hatlarının Ekmek Yapım Kalitesine Etkisi
Bu çalışmada, B kromozomu üzerindeki Glu-B1k aleli tarafından kodlanan 22 glutenin alt biriminin buğday kalitesine etkisi araştırılmıştır. Nevzatbey ve Triticum aestivum L. subsp. Sphaerococcum’a ait bir genotip ebeveyn olarak kullanılmış ve BC4F3 generasyonunda yakın izogenik hatlar (NIL'ler) elde edilmiştir. NIL'lerin bitki morfolojik özellikleri, protein oranı, sedimantasyon hacmi, laktik asit solvent tutma kapasitesi (STK) ve glutenin şişme indeksi (GSI) değerleri belirlenmiştir. 22 glutenin alt birimini taşıyan NIL'lerin ortalama protein oranı, 7+9 glutenin alt birimini taşıyan NIL'lerden daha yüksek bulunmuştur (sırasıyla %20.4 ve %16.2). Buna karşılık, 22 glutenin alt birimine sahip NIL'ler, 7+9 glutenin alt birimine sahip NIL'lerden daha düşük bir sedimantasyon hacmine sahip olmuştur. 22 glutenin alt birimi, sedimantasyon hacmini 19.47'den 13.49 mL'ye düşürmüştür. 7+9 glutenin alt birimi taşıyan NIL'lerin ortalama GSI değeri, 22 glutenin alt birimi taşıyan NIL'lerden (3.05 ve 2.92) daha yüksek olmuştur. Sonuç olarak, bu çalışmada az miktarda numunede 22 ve 7+9 glutenin alt birimine sahip NIL'ler arasında bir kalite farkının olduğu belirlendi. Bu bulgular, 22 glutenin alt biriminin düşük gluten kücü ile ilişkili olabileceğini ortaya koymuştur.
Alvarez, J. B., & Guzmán, C. (2019). Recovery of wheat heritage for traditional food: Genetic variation for high molecular weight glutenin subunits in neglected/underutilized wheat. Agronomy, 9(11), 755. https://doi.org/10.3390/agronomy9110755
Asri, N., Rostami-Nejad, M., Anderson, R. P., & Rostami, K. (2021). The gluten gene: unlocking the understanding of gluten sensitivity and intolerance. The Application Of Clinical Genetics, 14, 37. DOI: 10.2147/TACG.S276596
Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., & Gourdon, J. (2001). Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 119(1), 59-67. https://doi.org/10.1023/A:1017586220359
Day, L. (2011). Wheat gluten: production, properties and application. In Handbook of food proteins (pp. 267-288). Woodhead Publishing
Filip, E. (2018). Composition of high molecular weight glutenin subunits in polish common wheat cultivars (Triticum aestivum L.). Journal of Food Quality, Article ID 2473420. https://doi.org/10.1155/2018/2473420
Guzman, C., Posadas-Romano, G., Hernandez-Espinosa, A., Morales- Dorantes, A., & Peña, R. J. (2015). A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread-making quality. Journal of Cereal Science, 66, 59-65. https://doi.org/10.1016/j.jcs.2015.10.009
Guzman, C., Peña, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., Rutkoski, J., Poland, J., & Battenfield, S. (2016a). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004
Guzman, C., Mondal, S., Govindan, V., Autrique, J. E., Posadas-Romano, G., Cervantes, F., Crossa, J., Vargas, M., Singh, R. V., & Peña, R. J. (2016b). Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT-Food Science and Technology, 69, 327–333. https://doi.org/10.1016/j.lwt.2016.01.068
Guzman, C., Crossa, J., Mondal, S., Govindan, V., Huerta, J., Crespo-Herrera, L., Vargas, M. P., Singh, R., & Ibba, M. I. (2022). Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines, Field Crops Research, 284, 108585. https://doi.org/10.1016/j.fcr.2022.108585
JMP. 2013. 13.0.0. Scintilla - Copyright (C) 1998-2014 by Neil Hodgson;neilh@scintilla. Org SAS Institute. JMP 13.0 users guide. Carry, NC: Release SAS Institute Inc.
Karaduman, Y. (2020). Assessing gluten strength with a new small‐scale LASRC method useful for soft wheat breeding programs. Cereal Chemistry, 97 (2), 196-204. https://doi.org/10.1002/cche.10235
Karaduman, Y., Yeşildağ, Z. S., & Akın, A. (2022). Evaluating selection efficacy of high molecular weight glutenin subunits (HMWGs) by relating gluten quality parameters. LWT-Food Science and Technology, 155, 112949. https://doi.org/10.1016/j.lwt.2021.112949
Kweon, M., Slade, L., & Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding – a Review., Cereal Chemistry, 88, 537–552. https:// doi.org/10.1094/CCHEM-07-11-0092
Labuschagne, M., Guzmán, C., Phakela, K., Wentzel, B., & van Biljon, A. (2021). Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants, 10, 1000. https://doi.org/10.3390/plants10051000
Lei, Z. S., Gale, K. R., He, Z. H., Gianibelli, C., Larroque, O., Xia, X. C., Butow, B. J., & Ma, W. (2006). Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 43(1), 94-101. https://doi.org/10.1016/j.jcs.2005.08.003
Li, Y., Fu, J., Shen, Q., & Yang, D. (2020). High-molecular-weight glutenin subunits: Genetics, structures, and relation to end use qualities. International Journal of Molecular Sciences, 22(1), 184. https://doi.org/10.3390/ijms22010184
Nakamura, H. (2000). Allelic variation at high-molecular-weight glutenin subunit Loci, Glu-A1, Glu-B1 and Glu-D1, in Japanese and Chinese hexaploid wheats. Euphytica, 112(2), 187-193. https://doi.org/10.1023/A:1003888116674
Patterson, H. D., & Hunter, E. A. (1983). The efficiency of incomplete block designs in National List and Recommended List cereal variety trials. The Journal of Agricultural Science, 101(2), 427-433. https://doi.org/10.1017/S002185960003776X
Payne, P. I., Law, C. N., & Mudd, E. E. (1980). Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics, 58, 113–120. https://doi.org/ 10.1007/BF00263101
Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between HMW glutenin subunit composition and the bread‐making quality of British‐grown wheat varieties. Journal of the Science of Food and Agriculture, 40(1), 51-65. https://doi.org/10.1002/jsfa.2740400108
Pena, R. J. (2002). Wheat for bread and other foods. Bread wheat improvement and production. Food and Agriculture Organization of the United Nations. Rome, 483-542
Peng, Y., Yu, K., Zhang, Y., Islam, S., Sun, D., & Ma, W. (2015). Two novel y-type high molecular weight glutenin genes in Chinese wheat landraces of the Yangtze-River region. PLoS One, 10(11), e0142348. https://doi.org/10.1371/journal.pone.0142348
Perten, H., Bondesson, K., & Mjorndal, A. (1992). Gluten index variations in commercial Swedish wheat samples. Cereal Foods World. 37, 655-660.
Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering, 72(2), 167-178. https://doi.org/10.1016/j.jfoodeng.2004.11.033
Sharma, A., Garg, S., Sheikh, I., Vyas, P., & Dhaliwal, H. S. (2020). Effect of wheat grain protein composition on end-use quality. Journal of Food Science and Technology, 57(8), 2771-2785. 10.1007/s13197-019-04222-6
Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947-958. https://doi.org/10.1093/jexbot/53.370.947
Wang, C., Kovacs, & M. I. P. (2002). Swelling index of glutenin test. II. Application in prediction of dough properties and end‐use quality. Cereal Chemistry, 79(2), 190-196. https://doi.org/10.1094/CCHEM.2002.79.2.190
Wanous, M., Munkvold, J., Kruse, J., Brachman, E., Klawiter, M., & Fuehrer, K. (2003). Identification of chromosome arms influencing expression of the HMW glutenins in wheat. Theoretical and Applied Genetics, 106(2), 213-220. https://doi.org/10.1007/s00122-002-1098-7
Altınsoy, B., Aydın, N., & Karaduman, Y. (2023). The Effect of High Molecular Weight Glutenin Subunit Encoded by Glu-B1k Allele on Bread-Making Quality of Near-Isogenic Lines of Bread Wheat. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 9(3), 416-435. https://doi.org/10.24180/ijaws.1293214