Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of High Molecular Weight Glutenin Subunit Encoded by Glu-B1k Allele on Bread-Making Quality of Near-Isogenic Lines of Bread Wheat

Yıl 2023, Cilt: 9 Sayı: 3, 416 - 435, 20.12.2023
https://doi.org/10.24180/ijaws.1293214

Öz

: In this study, the effect of the 22 glutenin subunit encoded by the Glu-B1k allele on the chromosome B on the quality of wheat was investigated. Nevzatbey and a genotype of Triticum aestivum L. subsp. sphaerococcum were used as parents and produced the near-isogenic lines (NILs) in the generation of BC4F3. Plant morphological traits and protein content, sedimentation volume, lactic acid solvent retention capacity (SRC), and glutenin swelling index (GSI) of the NILs were determined. The mean protein content of the NILs carrying 22 glutenin subunit was higher than that of the NILs carrying the 7+9 glutenin subunit (20.4% and 16.2%, respectively). In contrast, the NILs with 22 glutenin subunit had a lower sedimentation volume than those of the NILs with 7+9 glutenin subunits. The 22 glutenin subunit decreased the sedimentation volume from 19.47 to 13.49 mL. The average GSI value of the NILs carrying 7+9 glutenin subunits was higher than that of the NILs carrying 22 glutenin subunit (3.05 and 2.92). In conclusion, in this study we were able to detect a quality difference between NILs with 22 and 7+9 glutenin subunits in a small amount of samples. These findings suggest that glutenin subunit 22 may be associated with low gluten strength.

Destekleyen Kurum

This study was a master's thesis conducted in the Department of Bioengineering at Karamanoglu Mehmetbey University

Kaynakça

  • AACC (2010). Approved Methods of Analysis, eleventh ed. AACC,St. Paul, MN.
  • Alvarez, J. B., & Guzmán, C. (2019). Recovery of wheat heritage for traditional food: Genetic variation for high molecular weight glutenin subunits in neglected/underutilized wheat. Agronomy, 9(11), 755. https://doi.org/10.3390/agronomy9110755
  • Asri, N., Rostami-Nejad, M., Anderson, R. P., & Rostami, K. (2021). The gluten gene: unlocking the understanding of gluten sensitivity and intolerance. The Application Of Clinical Genetics, 14, 37. DOI: 10.2147/TACG.S276596
  • Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., & Gourdon, J. (2001). Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 119(1), 59-67. https://doi.org/10.1023/A:1017586220359
  • Day, L. (2011). Wheat gluten: production, properties and application. In Handbook of food proteins (pp. 267-288). Woodhead Publishing
  • Filip, E. (2018). Composition of high molecular weight glutenin subunits in polish common wheat cultivars (Triticum aestivum L.). Journal of Food Quality, Article ID 2473420. https://doi.org/10.1155/2018/2473420
  • Guzman, C., Posadas-Romano, G., Hernandez-Espinosa, A., Morales- Dorantes, A., & Peña, R. J. (2015). A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread-making quality. Journal of Cereal Science, 66, 59-65. https://doi.org/10.1016/j.jcs.2015.10.009
  • Guzman, C., Peña, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., Rutkoski, J., Poland, J., & Battenfield, S. (2016a). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004
  • Guzman, C., Mondal, S., Govindan, V., Autrique, J. E., Posadas-Romano, G., Cervantes, F., Crossa, J., Vargas, M., Singh, R. V., & Peña, R. J. (2016b). Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT-Food Science and Technology, 69, 327–333. https://doi.org/10.1016/j.lwt.2016.01.068
  • Guzman, C., Crossa, J., Mondal, S., Govindan, V., Huerta, J., Crespo-Herrera, L., Vargas, M. P., Singh, R., & Ibba, M. I. (2022). Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines, Field Crops Research, 284, 108585. https://doi.org/10.1016/j.fcr.2022.108585
  • JMP. 2013. 13.0.0. Scintilla - Copyright (C) 1998-2014 by Neil Hodgson;neilh@scintilla. Org SAS Institute. JMP 13.0 users guide. Carry, NC: Release SAS Institute Inc.
  • Karaduman, Y. (2020). Assessing gluten strength with a new small‐scale LASRC method useful for soft wheat breeding programs. Cereal Chemistry, 97 (2), 196-204. https://doi.org/10.1002/cche.10235
  • Karaduman, Y., Yeşildağ, Z. S., & Akın, A. (2022). Evaluating selection efficacy of high molecular weight glutenin subunits (HMWGs) by relating gluten quality parameters. LWT-Food Science and Technology, 155, 112949. https://doi.org/10.1016/j.lwt.2021.112949
  • Kweon, M., Slade, L., & Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding – a Review., Cereal Chemistry, 88, 537–552. https:// doi.org/10.1094/CCHEM-07-11-0092
  • Labuschagne, M., Guzmán, C., Phakela, K., Wentzel, B., & van Biljon, A. (2021). Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants, 10, 1000. https://doi.org/10.3390/plants10051000
  • Lei, Z. S., Gale, K. R., He, Z. H., Gianibelli, C., Larroque, O., Xia, X. C., Butow, B. J., & Ma, W. (2006). Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 43(1), 94-101. https://doi.org/10.1016/j.jcs.2005.08.003
  • Li, Y., Fu, J., Shen, Q., & Yang, D. (2020). High-molecular-weight glutenin subunits: Genetics, structures, and relation to end use qualities. International Journal of Molecular Sciences, 22(1), 184. https://doi.org/10.3390/ijms22010184
  • Nakamura, H. (2000). Allelic variation at high-molecular-weight glutenin subunit Loci, Glu-A1, Glu-B1 and Glu-D1, in Japanese and Chinese hexaploid wheats. Euphytica, 112(2), 187-193. https://doi.org/10.1023/A:1003888116674
  • Patterson, H. D., & Hunter, E. A. (1983). The efficiency of incomplete block designs in National List and Recommended List cereal variety trials. The Journal of Agricultural Science, 101(2), 427-433. https://doi.org/10.1017/S002185960003776X
  • Payne, P. I., Law, C. N., & Mudd, E. E. (1980). Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics, 58, 113–120. https://doi.org/ 10.1007/BF00263101
  • Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between HMW glutenin subunit composition and the bread‐making quality of British‐grown wheat varieties. Journal of the Science of Food and Agriculture, 40(1), 51-65. https://doi.org/10.1002/jsfa.2740400108
  • Pena, R. J. (2002). Wheat for bread and other foods. Bread wheat improvement and production. Food and Agriculture Organization of the United Nations. Rome, 483-542
  • Peng, Y., Yu, K., Zhang, Y., Islam, S., Sun, D., & Ma, W. (2015). Two novel y-type high molecular weight glutenin genes in Chinese wheat landraces of the Yangtze-River region. PLoS One, 10(11), e0142348. https://doi.org/10.1371/journal.pone.0142348
  • Perten, H., Bondesson, K., & Mjorndal, A. (1992). Gluten index variations in commercial Swedish wheat samples. Cereal Foods World. 37, 655-660.
  • Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering, 72(2), 167-178. https://doi.org/10.1016/j.jfoodeng.2004.11.033
  • Sharma, A., Garg, S., Sheikh, I., Vyas, P., & Dhaliwal, H. S. (2020). Effect of wheat grain protein composition on end-use quality. Journal of Food Science and Technology, 57(8), 2771-2785. 10.1007/s13197-019-04222-6
  • Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947-958. https://doi.org/10.1093/jexbot/53.370.947
  • Wang, C., Kovacs, & M. I. P. (2002). Swelling index of glutenin test. II. Application in prediction of dough properties and end‐use quality. Cereal Chemistry, 79(2), 190-196. https://doi.org/10.1094/CCHEM.2002.79.2.190
  • Wanous, M., Munkvold, J., Kruse, J., Brachman, E., Klawiter, M., & Fuehrer, K. (2003). Identification of chromosome arms influencing expression of the HMW glutenins in wheat. Theoretical and Applied Genetics, 106(2), 213-220. https://doi.org/10.1007/s00122-002-1098-7

Glu-B1k Alleli Tarafından Kodlanan Yüksek Moleküler Ağırlıklı Glutenin Alt Biriminin Ekmeklik Buğday Yakın İzogenik Hatlarının Ekmek Yapım Kalitesine Etkisi

Yıl 2023, Cilt: 9 Sayı: 3, 416 - 435, 20.12.2023
https://doi.org/10.24180/ijaws.1293214

Öz

Bu çalışmada, B kromozomu üzerindeki Glu-B1k aleli tarafından kodlanan 22 glutenin alt biriminin buğday kalitesine etkisi araştırılmıştır. Nevzatbey ve Triticum aestivum L. subsp. Sphaerococcum’a ait bir genotip ebeveyn olarak kullanılmış ve BC4F3 generasyonunda yakın izogenik hatlar (NIL'ler) elde edilmiştir. NIL'lerin bitki morfolojik özellikleri, protein oranı, sedimantasyon hacmi, laktik asit solvent tutma kapasitesi (STK) ve glutenin şişme indeksi (GSI) değerleri belirlenmiştir. 22 glutenin alt birimini taşıyan NIL'lerin ortalama protein oranı, 7+9 glutenin alt birimini taşıyan NIL'lerden daha yüksek bulunmuştur (sırasıyla %20.4 ve %16.2). Buna karşılık, 22 glutenin alt birimine sahip NIL'ler, 7+9 glutenin alt birimine sahip NIL'lerden daha düşük bir sedimantasyon hacmine sahip olmuştur. 22 glutenin alt birimi, sedimantasyon hacmini 19.47'den 13.49 mL'ye düşürmüştür. 7+9 glutenin alt birimi taşıyan NIL'lerin ortalama GSI değeri, 22 glutenin alt birimi taşıyan NIL'lerden (3.05 ve 2.92) daha yüksek olmuştur. Sonuç olarak, bu çalışmada az miktarda numunede 22 ve 7+9 glutenin alt birimine sahip NIL'ler arasında bir kalite farkının olduğu belirlendi. Bu bulgular, 22 glutenin alt biriminin düşük gluten kücü ile ilişkili olabileceğini ortaya koymuştur.

Kaynakça

  • AACC (2010). Approved Methods of Analysis, eleventh ed. AACC,St. Paul, MN.
  • Alvarez, J. B., & Guzmán, C. (2019). Recovery of wheat heritage for traditional food: Genetic variation for high molecular weight glutenin subunits in neglected/underutilized wheat. Agronomy, 9(11), 755. https://doi.org/10.3390/agronomy9110755
  • Asri, N., Rostami-Nejad, M., Anderson, R. P., & Rostami, K. (2021). The gluten gene: unlocking the understanding of gluten sensitivity and intolerance. The Application Of Clinical Genetics, 14, 37. DOI: 10.2147/TACG.S276596
  • Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., & Gourdon, J. (2001). Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 119(1), 59-67. https://doi.org/10.1023/A:1017586220359
  • Day, L. (2011). Wheat gluten: production, properties and application. In Handbook of food proteins (pp. 267-288). Woodhead Publishing
  • Filip, E. (2018). Composition of high molecular weight glutenin subunits in polish common wheat cultivars (Triticum aestivum L.). Journal of Food Quality, Article ID 2473420. https://doi.org/10.1155/2018/2473420
  • Guzman, C., Posadas-Romano, G., Hernandez-Espinosa, A., Morales- Dorantes, A., & Peña, R. J. (2015). A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread-making quality. Journal of Cereal Science, 66, 59-65. https://doi.org/10.1016/j.jcs.2015.10.009
  • Guzman, C., Peña, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., Rutkoski, J., Poland, J., & Battenfield, S. (2016a). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004
  • Guzman, C., Mondal, S., Govindan, V., Autrique, J. E., Posadas-Romano, G., Cervantes, F., Crossa, J., Vargas, M., Singh, R. V., & Peña, R. J. (2016b). Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT-Food Science and Technology, 69, 327–333. https://doi.org/10.1016/j.lwt.2016.01.068
  • Guzman, C., Crossa, J., Mondal, S., Govindan, V., Huerta, J., Crespo-Herrera, L., Vargas, M. P., Singh, R., & Ibba, M. I. (2022). Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines, Field Crops Research, 284, 108585. https://doi.org/10.1016/j.fcr.2022.108585
  • JMP. 2013. 13.0.0. Scintilla - Copyright (C) 1998-2014 by Neil Hodgson;neilh@scintilla. Org SAS Institute. JMP 13.0 users guide. Carry, NC: Release SAS Institute Inc.
  • Karaduman, Y. (2020). Assessing gluten strength with a new small‐scale LASRC method useful for soft wheat breeding programs. Cereal Chemistry, 97 (2), 196-204. https://doi.org/10.1002/cche.10235
  • Karaduman, Y., Yeşildağ, Z. S., & Akın, A. (2022). Evaluating selection efficacy of high molecular weight glutenin subunits (HMWGs) by relating gluten quality parameters. LWT-Food Science and Technology, 155, 112949. https://doi.org/10.1016/j.lwt.2021.112949
  • Kweon, M., Slade, L., & Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding – a Review., Cereal Chemistry, 88, 537–552. https:// doi.org/10.1094/CCHEM-07-11-0092
  • Labuschagne, M., Guzmán, C., Phakela, K., Wentzel, B., & van Biljon, A. (2021). Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants, 10, 1000. https://doi.org/10.3390/plants10051000
  • Lei, Z. S., Gale, K. R., He, Z. H., Gianibelli, C., Larroque, O., Xia, X. C., Butow, B. J., & Ma, W. (2006). Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 43(1), 94-101. https://doi.org/10.1016/j.jcs.2005.08.003
  • Li, Y., Fu, J., Shen, Q., & Yang, D. (2020). High-molecular-weight glutenin subunits: Genetics, structures, and relation to end use qualities. International Journal of Molecular Sciences, 22(1), 184. https://doi.org/10.3390/ijms22010184
  • Nakamura, H. (2000). Allelic variation at high-molecular-weight glutenin subunit Loci, Glu-A1, Glu-B1 and Glu-D1, in Japanese and Chinese hexaploid wheats. Euphytica, 112(2), 187-193. https://doi.org/10.1023/A:1003888116674
  • Patterson, H. D., & Hunter, E. A. (1983). The efficiency of incomplete block designs in National List and Recommended List cereal variety trials. The Journal of Agricultural Science, 101(2), 427-433. https://doi.org/10.1017/S002185960003776X
  • Payne, P. I., Law, C. N., & Mudd, E. E. (1980). Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics, 58, 113–120. https://doi.org/ 10.1007/BF00263101
  • Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between HMW glutenin subunit composition and the bread‐making quality of British‐grown wheat varieties. Journal of the Science of Food and Agriculture, 40(1), 51-65. https://doi.org/10.1002/jsfa.2740400108
  • Pena, R. J. (2002). Wheat for bread and other foods. Bread wheat improvement and production. Food and Agriculture Organization of the United Nations. Rome, 483-542
  • Peng, Y., Yu, K., Zhang, Y., Islam, S., Sun, D., & Ma, W. (2015). Two novel y-type high molecular weight glutenin genes in Chinese wheat landraces of the Yangtze-River region. PLoS One, 10(11), e0142348. https://doi.org/10.1371/journal.pone.0142348
  • Perten, H., Bondesson, K., & Mjorndal, A. (1992). Gluten index variations in commercial Swedish wheat samples. Cereal Foods World. 37, 655-660.
  • Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering, 72(2), 167-178. https://doi.org/10.1016/j.jfoodeng.2004.11.033
  • Sharma, A., Garg, S., Sheikh, I., Vyas, P., & Dhaliwal, H. S. (2020). Effect of wheat grain protein composition on end-use quality. Journal of Food Science and Technology, 57(8), 2771-2785. 10.1007/s13197-019-04222-6
  • Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947-958. https://doi.org/10.1093/jexbot/53.370.947
  • Wang, C., Kovacs, & M. I. P. (2002). Swelling index of glutenin test. II. Application in prediction of dough properties and end‐use quality. Cereal Chemistry, 79(2), 190-196. https://doi.org/10.1094/CCHEM.2002.79.2.190
  • Wanous, M., Munkvold, J., Kruse, J., Brachman, E., Klawiter, M., & Fuehrer, K. (2003). Identification of chromosome arms influencing expression of the HMW glutenins in wheat. Theoretical and Applied Genetics, 106(2), 213-220. https://doi.org/10.1007/s00122-002-1098-7
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tahıllar ve Yemeklik Tane Baklagiller
Bölüm Tarla Bitkileri
Yazarlar

Betül Altınsoy 0000-0001-9805-504X

Nevzat Aydın 0000-0003-3251-6880

Yaşar Karaduman 0000-0003-1306-3572

Erken Görünüm Tarihi 20 Aralık 2023
Yayımlanma Tarihi 20 Aralık 2023
Gönderilme Tarihi 5 Mayıs 2023
Kabul Tarihi 14 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 3

Kaynak Göster

APA Altınsoy, B., Aydın, N., & Karaduman, Y. (2023). The Effect of High Molecular Weight Glutenin Subunit Encoded by Glu-B1k Allele on Bread-Making Quality of Near-Isogenic Lines of Bread Wheat. International Journal of Agricultural and Wildlife Sciences, 9(3), 416-435. https://doi.org/10.24180/ijaws.1293214

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a